Methods and apparatus for fusionless treatment of spinal...

Surgery – Instruments – Orthopedic instrumentation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S075000, C606S075000, C606S075000, C606S087000

Reexamination Certificate

active

06623484

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention concerns instrumentation and techniques for the treatment of spinal deformities. In particular, the inventive methods and devices accomplish this treatment without the need for fusion of the spine.
Surgical intervention for the treatment of injuries to, and deformities of the spine is approaching its first century. Nevertheless, the field of spinal surgery was not significantly advanced until the development of the hook and rod system by Dr. Harrington in the early 1950's. Dr. Harrington developed this system in Houston when he began care of children with progressive neuromuscular scoliosis secondary to polio. Until that time, the progressive scoliosis had been treated with external casts, which themselves yielded unacceptably high complication rates. After a decade of development, the hook and rod system evolved into the form that is known today as the Harrington Instrumentation.
The original primary indication for use of Harrington Instrumentation was in the treatment of scoliosis. Scoliosis is a deformity of the spine in the coronal plane, in the form of an abnormal curvature. While a normal spine presents essentially a straight line in the coronal plane, a scoliotic spine can present various lateral curvatures in the coronal plane. The types of scoliotic deformities include thoracic, thoracolumbar, lumbar or can constitute a double curve in both the thoracic and lumbar regions.
Early techniques for correction of scoliosis utilized a halo-traction device. In this technique, a halo is fixed to the skull and a vertical force is applied to the spine through the skull. In a halo-femoral traction approach, the patient is supine and traction forces are applied through a halo and a femoral pin. In a halo-gravity traction procedure, the patient sits in a wheelchair and a suspended weight applies a vertical force through the halo. In halo-pelvic traction, a pelvic ring is affixed to the patient and a series of threaded rods connect the cranial halo to the pelvic ring to apply an adjustable force separating the two rings. In procedures using the halo, the patient is either immobile or severely restricted in mobility.
To avoid the need for halos, various rod-based systems have been developed. Of course, the original rod system for correction of scoliosis is the Harrington System which utilized threaded and notched rods. In particular, a typical Harrington System utilizes a notched distraction rod and at least one threaded compression rod, with the distraction and compression rods being applied to the concave and convex portions of the curvature, respectively. In some procedures, a single distraction rod spans across several thoracic and lumbar vertebrae. The threaded compression rods are then used to stabilize the rod fixation. In other approaches, the compression rod spans across the convex portion of the curve, such as between T
6
and L
2
. In a Harrington procedure, a hook placed at the notched end of the distraction rod can be progressively advanced toward the cranial end of the rod to progressively correct the spinal deformation. At the same time, hooks engaged to the threaded compression rods can be drawn together on the convex side of the curvature to assist in the correction and to stabilize the instrumented spine.
In an additional step of the Harrington procedure, once the spine has been substantially corrected, transverse stabilization can be added between the two rods extending on opposite sides of the spine. Importantly, for long term stability, bone graft is placed along the instrumented vertebral levels to achieve fusion along that portion of the spine.
One drawback commonly associated with the Harrington System is that the rods are completely straight. As a result, patients in which a Harrington System has been used to correct a scoliosis condition have been left with the so-called flat-back syndrome. Specifically, in correcting the lateral curvature of the spine, the normal sagittal plane curvature is eliminated by the presence of a completely straight rod. In some cases, it has been found that the patient is better off retaining the scoliotic curvature than enduring the complications associated with flat-back syndrome. Another drawback is the requirement of bracing and casting.
To address these problems, subsequent rod-based systems have relied upon pre-bent spinal rods and multiple fixation sites. Specifically, the rods are bent to the normal thoracic kyphosis and lumbar lordosis in the sagittal plane. One such system is the Luque segmental spinal instrumentation. In the early 1980's, Dr. Luque pioneered a technique for segmental correction of abnormal spinal curvatures in which wires were used to affix vertebral levels to a pre-bent rod. These sublaminar wires are used to help draw the vertebrae toward the rod and ultimately to hold the vertebrae in position. In one approach using Luque instrumentation, a unit rod is provided which utilizes a single rod anchored at its ends to the ilium and bent at its cranial end so that two halves of the rod are oriented on opposite sides of the spinal column. The unit rod can then be used as a lever to straighten the spine, after which Luque sublaminar wires are used to fix the vertebrae to the unit rod.
As with the Harrington System, the final step of the Luque Instrumentation is frequently fusion of the instrumented spinal segments. There have been suggestions for instrumentation without fusion to correct scoliosis in younger patients, this technique was believed to permit further spinal growth. However, the results of this instrumentation without fusion were not very promising and led to certain complications, including loss of correction, reduced spinal growth and an unacceptable rate of instrumentation failure.
In yet another rod-based instrumentation system pioneered by Dr. Cotrel in France, a pre-curved rod is engaged to the vertebrae at the concave side of the abnormal curvature. The rod is then rolled about its axis to derotate the scoliotic curvature and at the same time provide the instrumented segments with the normal sagittal plane curvature. For instance, in the correction of thoracic lordoscoliosis, rolling of a pre-curved rod not only derotates the curvature in the coronal plane, it also transforms that scoliotic curvature into a physiological thoracic kyphosis. The rod is held to the vertebrae by a series of hooks, which are ultimately fixed to the rod once the derotation process is complete. To ensure a stable correction, an additional rod is added on the opposite side of the spinous process from the first rod. Members for transversely connecting the two rods create a rigid scaffold are attached. Again, in this procedure, bone chips are placed along the instrumented vertebrae to achieve fusion at the instrumentation site.
Other rod-based systems have been developed over the last several years that accomplish similar correction of spinal deformities, such as scoliosis. For example, the TSRH® Universal Spine System of Danek Medical, Inc. and the ISOLA® Spine System of AcroMed Corp. can be instrumented to the spine to correct various types of spinal deformities. In all of these rod-based Systems, the spinal rods are permanently fixed to the patient's spine. Of course, once fusion of all the instrumented levels has occurred, the original instrumentation is largely superfluous.
Other techniques that have been developed for correction of spinal deformities are performed anteriorly from the convex side of the abnormal curvature. In this technique, the intervertebral discs are removed and an osteotomy spreader is used to separate the adjacent vertebrae, thereby realigning the vertebral bodies in the coronal plane. A rod is attached to the spine via screws to maintain the correction. Fusion material, such as bone chips, are inserted into the widened intervertebral disc spaces to ultimately achieve fusion at those vertebral levels. Immobilization using an external cast or brace can be utilized while fusion is occurring.
A related technique involves Dwyer i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and apparatus for fusionless treatment of spinal... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and apparatus for fusionless treatment of spinal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for fusionless treatment of spinal... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3023320

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.