Tuning means for fulcrum tremolo

Music – Instruments – Stringed

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C084S298000, C084S454000, C084S455000, C084S313000

Reexamination Certificate

active

06563034

ABSTRACT:

BACKGROUND OF THE INVENTION
In a stringed musical instrument, such as a guitar, the strings extend unsupported between a first critical point usually formed by the nut where the neck joins the head and a second critical point usually formed by the bridge positioned on the body. The strings are anchored at one end on a portion of the instrument known as the tailpiece, strung over the bridge and the nut on the head of the instrument and in conventional instruments anchored on the other end to the tuning pegs where an untensioned string is tensioned and adjusted to a tuned condition. The second critical point is formed by a part of the bridge or by a part of a combined bridge and tailpiece structure. Traditionally, the size of the bridge elements are quite small so as to create a clearly defined single point of contact between the string and the bridge element. It is between these two points that the string length is determined. This is sometimes referred to as the scale length. Adjusting the relative distance between the first and second critical points is called harmonic tuning. Some bridges structures have individually adjustable bridge elements for further refining the harmonic tuning. Additional means for the adjustment of the height of each bridge element relative the body of the instrument is often provided. The typical construction of the strings, particularly for guitar and bass, have a plain end and a “ball end” in which a washer-like addition is wrapped by the string itself as a means to secure the string to the instrument on the tailpiece. The wrapping usually extends ½′ towards the plain end and as such the tailpiece structure must insure that the wrapping does not extend over the second critical point when arranged on the instrument. Fine tuning has been a long standing problem for stringed musical instruments.
It is known to those skilled in stringed musical instrument design and construction that combining the bridge and the tailpiece can be advantageous and that, additionally, various tremolos have been proposed and utilized for varying the tension of all the strings simultaneously for the purpose of creating a tremolo sound. Further, it is known to those skilled in the art that there are a great many commonly used names for such devices, such as tremolo, tremolo device, tremolo tailpiece, tremolo bridge, fulcrum tremolo, fulcrum tremolo bridge, fulcrum tremolo tailpiece, fulcrum tremolo bridge-tailpiece, vibrato, vibrato bridge, vibrato tailpiece, vibrato bridge tailpiece, etc.
Many manufacturing techniques have been employed in the construction of such devices and vary from stamping and folding on one end to casting and machining of parts on the other end.
In one specific species, known as the fulcrum tremolo, Fender U.S. Pat. No. 2,741,146, shows and provides a tremolo device which incorporates a novel bridge structure and the tailpiece, commonly known to specifically provide the anchoring means for the strings. The bridge plate is also known as the base plate. The base plate upon which the individual bridge elements are adjustably secured has a beveled ridge portion which is secured to the instrument body by six screws for permitting pivotal movement about a fulcrum axis which varies the tension on the strings and produces the desired tremolo effect. Further, the bridge and the tailpiece both move together as the tremolo device is pivoted. The bridge elements are stamped and folded into a suitable form and are loosely held in place by a spring loaded attachment screw arrangement until the instrument is strung; the attachment screws are secured through openings in a small folded ridge portion of the base plate farthest from the fulcrum axis. The bridge elements also incorporate set screws for varying the relative height of the bridge elements to the base plate bringing the number of parts for the six bridge elements to 30 or 5 part per bridge element assembly.
Typically, when a fulcrum tremolo pivots about its fulcrum axis, counter springs are utilized to counteract the pull of the strings. Counter springs are usually connected to the body of the instrument at one end and to a separate spring attachment means, usually called a spring block, fashioned often from a block of milled or cast steel and secured to the bottom of the base plate by three screws bringing the total including the mounting and tremolo arm assembly of the individual parts to the whole assembly to 43. Other design for similar tremolos have had as many as 8 parts per bridge assembly.
Improvements to Fender U.S. Pat. No. 2,741,146 fulcrum tremolo have included using string locks at the nut and immediately behind the second critical point on each of the bridge elements to limit string stretch to within these two points to improve the return to initial position after pivoting the tremolo device (Rose U.S. Pat. No. 4,171,661). Using the string locks required removing the ball end of the string for installation on the tremolo. In Rose U.S. Pat. No. 4,497,236 a combination of the bridge element, the tailpiece and fine tuners replaced the “novel bridge structure” incorporating the tailpiece of the Fender device so that within the limited range (typically less than a whole tone) the strings could be re-tuned without unlocking the string clamps at the nut. The fine tuner arrangements comprised seven parts per string and four of the parts are either machined or cast bringing the total number of parts of the tremolo to over 60. Additional improvements provided for a “knife-edge” pivot means where each of two screw-like posts received a corresponding beveled edge of the base plate. These screw-like posts were positioned about 2.925″ apart and had a broad spacing. Further refinements to the Fender fulcrum tremolo included a similar arrangement with the screw-like posts positioned about 2.22″ apart, having a narrow spacing and created a second standard. The parts of the two competing designs were not compatible. Consequently, those who had guitars with the 2.925″ spacing were limited to tremolos that had fine tuner arrangements and string locks and those guitars with the 2.22″ spacing were limited to those tremolos without fine-tuners and string locks.
The evolution from fine tuners to macro-tuners on a fulcrum tremolo (McCabe U.S. Pat. No. 5,986,191, Nov. 16, 1999) provided an intonation module that included a novel integrated one piece bridge-tailpiece structure secured to the base plate wherein the improvement included the means to bring and adjust the strings to playing pitch from an untensioned condition circumventing the re-tuning limits imposed by the fine tuner arrangements. Further, the improvement comprised “clamping” the string between the second critical point and the anchor point so the length of the string in the direction of the anchor point is substantially inextensible. The replacement of fine tuners with macro-tuners on a fulcrum tremolo (McCabe U.S. Pat. No. 5,965,831, Oct. 12, 1999) provided an alternative means wherein the improvement comprised gripping the string between the second critical point and the anchor point and eliminated string stretch in the direction of the anchor point. In each case the clamping or gripping means moved between two creative positions as the adjustment knob was adjusted to achieve macro-tuning. The macro-tuner arrangements although containing 25-50% fewer parts than fine tuner arrangements still comprised parts mostly either machined or cast.
Macro-tuners refer to tuners with the capacity to raise and adjust the tension of the strings from an untensioned condition to a proper playing pitch, and as such provide for alternate tunings and compensation for substantial string stretch during the life of the string essentially without additional means.
Therefore, for stringed musical instruments, as is known to those skilled in the art:
the second critical point is a clearly defined point on the bridge or individual bridge elements, the adjustment of which relative to the first critical point on the nut defines the length of t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Tuning means for fulcrum tremolo does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Tuning means for fulcrum tremolo, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tuning means for fulcrum tremolo will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3021698

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.