Treatment for film surface to reduce photo footing

Active solid-state devices (e.g. – transistors – solid-state diode – With means to control surface effects – Insulating coating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S639000, C257S640000, C257S797000, C438S636000, C438S792000

Reexamination Certificate

active

06586820

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to patterning techniques in the fabrication of semiconductor devices. In particular, the present invention relates to the treatment of anti-reflective coatings to reduce photo footing problems.
BACKGROUND OF THE INVENTION
The escalating requirements for high density and performance associated with ultra large scale integration impose correspondingly high demands on photolithographic techniques.
Conventional photolithographic techniques utilize a photoresist, i.e., a polymeric composition wherein a developer solvent will selectively remove only the exposed (or, for different compositions, selectively only the unexposed) portions of the photoresist. This leaves a patterned photoresist layer in place which provides a patterned mask for subsequent steps such as ion implementation, etching, or patterned deposition of materials by lift-off techniques (i.e., depositing a material over all and then removing the remaining portions of photoresist to leave the material only where the photoresist was not present). Since critical dimensions on the semiconductor device are predetermined by the dimensions of the openings in the photoresist curing mask, it essential that each step in the photolithography process transfer an accurate patterned mask for each subsequent step, i.e., that critical dimensions are maintained throughout the photolithography process.
A problem with conventional photolithography is pattern degradation resulting from the reflection of light from the layer being patterned. Anti-reflective coatings have been used in an attempt to solve this problem. Anti-reflective coatings are designed, by appropriate adjustment of variables such as composition, deposition conditions, and reaction conditions, to exhibit the requisite optical parameters to suppress multiple interference effects caused by the interference of light rays propagating in the same direction due to multiple reflections in the photoresist film. The effective use of an anti-reflective coating enables patterning and alignment without disturbance caused by such multiple interference, thereby improving line width accuracy and alignment, which are critical factors with respect to achieving fine patterns with minimal spacing. For example, the use of an anti-reflective coating is particularly significant when forming a via or contact hole over a stepped area, as when etching a dielectric layer deposited on a gate electrode and gate oxide formed on a semiconductor substrate in manufacturing a field effect transistor.
Typically, anti-reflective coatings are spun onto the wafer surface and a photoresist is then spun on top of the anti-reflective coating. After masking, the photoresist is cured and the wafer developed by means of wet chemical etching to remove the uncured (or cured, depending on photoresist) portions of the photoresist and those portions of the anti-reflective coating lying beneath the uncured (or cured, depending on photoresist) photoresist. In order to maintain critical dimensions, the development step should completely remove all portions of the anti-reflective coating lying beneath the uncured (or cured, depending on photoresist) photoresist. In other words, the pattern in the anti-reflective coating should accurately reflect the pattern in the photoresist after the development step. When there is this identity in pattern between the photoresist and the anti-reflective coating after the development step, the anti-reflective coating becomes an accurate mask for the patterning of subsequent layers and thus, critical dimensions in the resulting fabricated semiconductor device are maintained.
However, this identity in pattern between the photoresist and anti-reflective coating after the development step is not always realized due to the formation of a “foot” on the anti-reflective coating. Although the manifestation of a “foot” on anti-reflective coatings is well-known and various theories exist as to their cause, the “foot” abnormality has not, to date, been fully understood. Nonetheless, these “footings” narrow the opening in the photoresist through which the anti-reflective material is to be removed and removal of the anti-reflective material through this opening results in an anti-reflective layer which is an inaccurate mask for subsequent layers. Thus, the formation of a “footing” changes the critical dimensions in the resulting fabricated semiconductor device.
Therefore, in the fabrication of semiconductor devices, there exists a need for an improved photolithography technique whereby the beneficial effects of an anti-reflective coating may be realized while maintaining critical dimensions in each subsequent step through accurate transfer of pattern masks.
SUMMARY OF THE INVENTION
That need is met by the present invention. Thus, in one embodiment, there is provided a film comprising a layer of an anti-reflective coating which has been treated with a gaseous plasma or a solution of sulfuric acid and hydrogen peroxide. This film may consist entirely of a layer of anti-reflective coating which has been treated with a gaseous plasma or solution of sulfuric acid and hydrogen peroxide or may consist of a plurality of layers, with at least one layer being an anti-reflective coating which has been treated with a gaseous plasma or solution of sulfuric acid and hydrogen peroxide. For example, the film may consist of a dielectric layer, such as silicon dioxide or silicon nitride, overlaid with an anti-reflective coating which has been treated with gaseous plasma or solution of sulfuric acid and hydrogen peroxide. The anti-reflective coating is an inorganic dielectric material, typically selected from the group consisting of silicon-rich oxides defined by the formulas Si
x
O
y
and Si
x
O
y
:H
n
, and silicon-rich oxynitrides, defined by the formulas Si
x
O
y
N
z
and Si
x
O
y
N
z
:H
n
, and silicon nitrides defined by the formulas Si
x
N
z
and Si
x
N
z
:H
n
, wherein in all formulas, x, y, z, and n represent the atomic percentage of silicon, oxygen, nitrogen, and hydrogen, respectively, and wherein x is from about 0.36 to about 0.65, y is from about 0.02 to about 0.56, z is from about 0.07 to about 0.33, and n is from about 0.01 to about 0.30. For example, one such anti-reflective coating is selected from the group consisting of silicon-rich oxynitrides defined by the formulas Si
x
O
y
N
z
, wherein x=0.54, y=0.36, and z=0.10. The anti-reflective layer is typically deposited to a thickness range of from about 100 Å to about 1000 Å. However, as one of ordinary skill in the art would readily realize, the particular thickness of the anti-reflective layer will be dependent upon the thickness and composition of the existing film stack upon which the anti-reflective coating is being deposited. Gaseous plasmas for treating the anti-reflective coating are typically selected from the group consisting of O
2
, N
2
O, O
3
, He, O
2
/He, N
2
O/He, and O
3
/He. Solutions of sulfuric acid and hydrogen peroxide for treating the anti-reflective coating are well known to one of ordinary skill in the art.
In another embodiment of the present invention, there is provided a semiconductor device having at least one layer of an anti-reflective coating which has been treated with either a gaseous plasma or a solution of sulfuric acid and hydrogen peroxide.
In yet another embodiment, there is provided a method of patterning a silicon structure comprising: a) depositing an anti-reflective coating on an uppermost layer of a silicon substrate; b) treating the anti-reflective coating with gaseous plasma to form a plasma-treated anti-reflective coating; c) depositing a photoresist over the plasma-treated anti-reflective coating; d) providing a patterning mask; e) curing the photoresist through the mask to provide a pattern in the photoresist comprised of cured and uncured portions of photoresist, thereby setting pattern dimensions for subsequent steps; f) selectively removing either cured or uncured portions of the photoresist, thereby forming

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Treatment for film surface to reduce photo footing does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Treatment for film surface to reduce photo footing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Treatment for film surface to reduce photo footing will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3020172

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.