Methods and compositions for the identification and...

Chemistry: analytical and immunological testing – Heterocyclic carbon compound – Hetero-o

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S091100, C436S064000, C536S023100

Reexamination Certificate

active

06506607

ABSTRACT:

BACKGROUND OF THE INVENTION
Prostate cancer is the most commonly diagnosed cancer in American men and the second most common cause of death from cancer in American men.
Androgen withdrawal, by castration or through the use of an anti-androgenic drug, is the preferred treatment method for prostate cancer.
Bicalutamide (casodex) is a relatively potent, orally active anti-androgenic drug. Approximately 80% of the prostate cancer patients treated with bicalutamide respond to the treatment; however, most patients eventually relapse.
Prostate cancer, like other cancers, can be viewed as a breakdown in the communication between tumor cells and their environment, including their normal neighboring cells. Growth-stimulatory and growth-inhibitory signals are routinely exchanged between cells within a tissue. Normally, cells do not divide in the absence of stimulatory signals, and, likewise, will cease dividing in the presence of inhibitory signals. In a cancerous or neoplastic state, a cell acquires the ability to “override” these signals and to proliferate under conditions in which a normal cell would not grow.
In general, tumor cells must acquire a number of distinct aberrant traits in order to proliferate in an abnormal maimer. Reflecting this requirement is the fact that the genomes of certain well-studied tumors carry several different independently altered genes, including activated oncogenes and inactivated tumor suppressor genes.
In addition to abnormal cell proliferation, cells must acquire several other traits for tumor progression to occur. For example, early on in tumor progression, cells must evade the host immune system. Further, as tumor mass increases, the tumor must acquire vasculature to supply nourishment and remove metabolic waste. Additionally, cells must acquire an ability to invade adjacent tissue. In many cases cells ultimately acquire the capacity to metastasize to distant sites.
It is apparent that the complex process of tumor development and growth must involve multiple gene products. It is therefore important to define the role of specific genes involved in tumor development and growth and identify those genes and gene products that can serve as targets for the diagnosis, prevention and treatment of cancers.
In the realm of cancer therapy it often happens that a therapeutic agent that is initially effective for a given patient becomes, overtime, ineffective or less effective for that patient. The very same therapeutic agent may continue to be effective over a long period of time for a different patient. Further, a therapeutic agent which is effective, at least initially, for some patients is completely ineffective or even harmful for other patients. Accordingly, it would be useful to identify genes and/or gene products that represent prognostic markers with respect to a given therapeutic agent or class of therapeutic agents. It then may be possible to determine which patients will benefit from particular therapeutic regimen and, importantly, determine when, if ever, the therapeutic regime begins to lose its effectiveness. The ability to make such predictions would make it possible to cease a therapeutic regime which has lost its effectiveness well before its loss of effectiveness becomes apparent by conventional measures.
SUMMARY OF THE INVENTION
The invention features methods for selecting and monitoring the effectiveness of therapeutic agents used for the treatment of prostate cancer. The invention also features methods for identifying novel therapeutic agents for the treatment of prostate cancer. The invention also features methods and compositions diagnosing prostate cancer and methods and compositions for preventing, treating, and diagnosing prostate cancer.
The invention is based, in part, on the identification of two classes of differentially regulated genes: 1) genes that are more highly expressed in prostate cancer cells treated with testosterone than in untreated prostate cancer cells; and 2) genes that are more highly expressed in prostate cancer cells treated with bicalutamide, an anti-androgenic compound, than in untreated prostate cancer cells. Genes which are more highly expressed in testosterone-treated prostate cancer cells than untreated prostate cancer cells are listed in Table 1 (SEQ ID NOS:
1-40 and 86-130
). Genes which are more highly expressed in bicalutamide-treated prostate cancer cells than untreated prostate cancer cells are listed in Table 2 (SEQ ID NOS:
41-85 and 131-191
).
By examining the expression of one or more of these identified genes in a sample of prostate cancer cells, it is possible to determine whether a selected compound, e.g., an anti-androgenic compound, can be used to treat the prostate cancer. Importantly, this determination can be made on a patient by patient basis. Thus, one can determine whether or not a particular prostate cancer treatment is likely to benefit a particular patient. The invention also features methods for determining whether a particular prostate cancer has become refractory to treatment with an anti-androgenic compound or other therapeutic agent.
The invention also features diagnostic methods and prognostic methods which can be used to identify patients having or at risk for developing prostate cancer. The identified differentially expressed genes whose expression is increased in the presence of testosterone and/or the products of such genes can be used to identify cells exhibiting or predisposed development of prostate cancer thereby diagnosing individuals having, or at high risk for developing, prostate cancer. The detection of the differential expression of identified genes can be used to select therapies before the benign cells attain a malignant state and to design a preventive intervention in pre-neoplastic cells in individuals at high risk.
In the various methods of the invention, gene expression can be measured at the mRNA or protein level. Alternatively, expression can be measured indirectly by measuring the activity of the protein encoded by the identified gene.
The differentially expressed genes identified herein are potential targets for the development of therapeutic compounds. Genes that are expressed at a higher level in prostate cancer cells in the presence of testosterone than in the absence of testosterone are identified. Because testosterone is required for growth and survival of prostate cancer cells, genes whose expression is increased in the presence of testosterone are potential therapeutic targets. Thus, identifying compounds which reduce the expression of such a gene or reduce the activity of the product of such a gene forms the basis for the development of new therapeutic agents. In addition, as noted above, increased expression of these genes can serve as a prognostic or diagnostic indicator of prostate cancer. Moreover, where increased expression of these genes is observed during the course of a therapy, it can be expected that the therapy is or has become relatively ineffective.
Also identified are genes that are expressed in prostate cancer cells at a high level in the presence of the anti-androgenic drug bicalutamide than in the absence of bicalutamide. Because bicalutamide is known to inhibit the growth of prostate cancer cells, genes whose expression is increased in the presence of bicalutamide are potential therapeutic targets. Thus, identifying compounds which increase the expression of such a gene or increase the activity of the product of such a gene forms the basis for the development of new therapeutic agents. In addition, increased expression of these genes can serve as a indicator that a given therapy is effective.
The invention provides methods for the identification of compounds that modulate the expression of genes or the activity of gene products involved in prostate cancer as well as methods for the treatment of prostate cancer. Such methods can, for example, involve the administration of such modulatory compounds to individuals exhibiting symptoms or markers of prostate cancer.
This invention is based, in part, on systematic search strategies co

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and compositions for the identification and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and compositions for the identification and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and compositions for the identification and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3019937

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.