Spectral polarizing tomographic dermatoscope

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S410000, C600S425000

Reexamination Certificate

active

06587711

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to the examination of skin, mucosa and cervical tissues for the purpose of detecting cancer and precancerous conditions and relates more particularly to a novel apparatus for use in performing examinations of the aforementioned types.
Cutaneous melanoma is a disease of increasing clinical and economic importance, both in the United States and abroad. For this reason, the early detection of cancerous and precancerous lesions is particularly important at preventing the progression of the disease. To highlight the importance of early detection, data from the National Cancer Database of the United States indicate that 37% of those patients who have been diagnosed with melanoma have advanced primary lesions that can spread to regional lymph nodes or beyond—often with dire consequences.
Despite the fact that approximately 1 in 87 Americans will be diagnosed with melanoma during his/her lifetime, the public, on balance, lacks the foresight and the ability to perform satisfactory self-examinations. In addition, the examination of skin by primary care, non-dermatologist physicians is uncommon, and such non-dermatologist physicians are poorly prepared to recognize and to diagnose melanomas. Notwithstanding the above, the benefits associated with skin examinations are becoming increasingly more apparently as an increase in skin examinations has been correlated with a reduction in the incidence of melanoma, as well as with a reduction in the development of advanced disease among melanoma patients.
Skin examinations typically involve visually inspecting the skin for lesions and evaluating any detected lesions according to well-defined criteria, such as the ABCD rule wherein A=asymmetry, B=border irregularity, C=color variability and D=diameter >6 mm. Potential melanomas detected according to the foregoing technique are then typically biopsied in order to permit a final diagnosis.
The visual inspection of skin is typically performed with the unaided eye, with a hand-held magnifying glass or with the assistance of an instrument known as a dermatoscope. One problem associated with visually inspecting skin with the unaided eye or with a magnifyring glass is that much of the light used to illuminate the skin being examined is difflusely reflected by the outermost surface of the skin, thereby obfuiscating much of the subsurface structures of interest. Another problem associated with visually inspecting skin with the unaided eye or with a magnifying glass is that certain lesions are too small to be readily detected.
A dermatoscope is typically a hand-held device that is constructed to address both of the shortcomings identified above. A dermatoscope typically comprises an elongated, hollow housing having a pair of open ends, one of the ends being covered with a glass cover adapted to be pressed against the skin of a patient, the other end being adapted for viewing by an operator. A white light source (e.g., lamp) and illuminating optics are disposed within the housing for illuminating the skin sample, and magnifying optics are appropriately positioned within the housing for magnifying the illuminated skin sample for viewing by the operator.
Typically, in use, the operator applies mineral oil or organic chemical solvent (alcohol) the skin to be examined and then presses the glass cover of the dermatoscope against the solvent or oil-covered skin. The mineral oil or solvent substantially matches the index of refraction of the outermost layers of skin and, thereby, renders said outermost layers sufficiently translucent to permit observation of underlying skin structures. The magnifying optics of the dermatoscope permits observation of structures that would otherwise be too small to detect with the unaided eye or with a magnifying glass.
Although, as explained above, conventional dermatoscopes provide a measure of improvement over the unaided eye or a magnifying glass, conventional dermatoscopes still suffer from certain drawbacks. One such drawback is that the operator must bring his/her face down into proximity with the dermatoscope and, by extension, must bring his/her face down into proximity with the patient's skin. As can readily be appreciated, such an arrangement is not hygienic. Another such drawback is that no permanent record of the observation of the skin is taken as the skin is viewed directly by the operator. Also, no telemedicine information can be relayed for expert diagnosis and advice.
Accordingly, one type of modification that has been made to conventional dermatoscopes has been to include means for producing and recording a videoimage of the examined skin. An example of such a dermatoscope is disclosed in U.S. Pat. No. 5,825,502, inventor Mayer, which issued Oct. 20, 1998, and which is incorporated herein by reference. According to the aforementioned patent, there is disclosed a mobile device for close-up-photography or videorecording that is easily usable for the investigation of surface details of an object which is particularly large and soft, for example, human skin. When placed in contact with the surface of the object, then without further adjustments a sharp and greatly enlarged image is obtained. The device includes a distance-enforcing structure between the optical system and the object which in the object-side focal area ends with a vaulted surface. The vaulted surface is mechanically stiff and is shaped to compensate the image-plane curvature of the optical system by establishing a corresponding object-plane curvature. This compensation: enhances the sharpness of the image obtained for an object surface which is pressed against the vaulted surface and thus is positioned in the true object-side focal area of the optical system.
Another example of a dermatoscope that includes means for producing and recording a videoimage of examined skin is disclosed in U.S. Pat. No. 6,010,450, inventor Perkins, which issued Jan. 4, 2000, and which is incorporated herein by reference.
Another problem associated with the examination of skin, whether said skin is observed with the unaided eye or with the aid of a derniatoscope, is that the analysis of the observed image often requires the application of qualitative and/or poorly-defined criteria. Such criteria may be judged differently by different individuals, thereby, leading to a lack of uniformity in diagnosis among various observers. Accordingly, one approach to this problem has been to automate the analysis of the recorded images obtained using a dermatoscope. An example of the aforementioned approach is described by Seidenari et al. in “Digital videomicroscopy and image analysis with automatic classification for detection of thin melanomas,”
Melanoma Research
, 9:163-171 (999), the disclosure of which is incorporated herein by reference.
As can readily be appreciated, one disadvantage associated with the use of dermatoscopes of the types described above is that mineral oil, solvent or the like must be applied to the patient's skin in order to minimize diffuse reflection at the outermost layer of skin and, in so doing, to render the skin more transparent to white lamp light. One approach to this problem has been to have the dermatoscope use polarized lamp light to illuminate the skin under examination and to have the dermatoscope image the underlying structures of the illuminated skin using the perpendicular component of the reflected light. An example of this approach is disclosed in U.S. Pat. No. 6,032,071, inventor Binder, which issued Feb. 29, 2000, and which is incorporated herein by reference. According to the aforementioned patent, a device for optical examination of human skin and its pigmentation is described that comprises a cylindrical housing in which are arranged an optical observation device and a vertical illumination device. Where it faces the skin, the housing is delimited by a plate made of transparent plastics or glass, which is applied to a skin site to be examined without introducing an immersion fluid. L

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Spectral polarizing tomographic dermatoscope does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Spectral polarizing tomographic dermatoscope, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spectral polarizing tomographic dermatoscope will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3015352

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.