Solutions for use as plasma expanders and substitutes

Chemistry: molecular biology and microbiology – Differentiated tissue or organ other than blood – per se – or... – Including perfusion; composition therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S001100, C435S002000

Reexamination Certificate

active

06627393

ABSTRACT:

INTRODUCTION
1. Field of the Invention
The invention relates to the field of plasma-like solutions which may be used to treat hypovolemic subjects or to substitute for the blood or plasma of a subject.
2. Background
Perfusion solutions and blood substitutes are known. The blood substitutes of Collins et al, Kidney preservation for transplantation. Lancet 1219-1222 (1969); Collins G. M., Hypothermic kidney storage. Transplant. Proc. I:1529 (1977); Filcher et al, Flush solution 2, a new concept for one to three day hypothermic renal storage preservation. Transplantation 39:2, 122-126 (1985); Robs et al, 72-hour canine kidney preservation without continuous perfusion. Transplantation 21:498 (1976); Sacks et al, Transplantation 19:283 (1974) and Kallerhoff et al, Effects of the preservation conditions and temperature on tissue acidification in canine kidneys. Transplantation 39:5, 485-489 (1985) all consist only of low molecular weight molecules that readily traverse the capillary bed of the subject and thus are generally incapable of maintaining proper ionic or fluid balance or plasma volume when used in an intact mammalian subject.
Klebanoff and Phillips, Cryobiology 6:121-125 (1969) disclosed hypothermic asanguinous perfusion of dogs with 11 of 15 subjects surviving up to 95 minutes when perfused with buffered Ringer's lactate at 7.1 to 16 degrees C. (44.6-60.4 degrees F.).
Those blood substitutes that have an impermeable substance to maintain volume use human serum albumin or a mixture of plasma proteins, as the impermeate molecule to maintain blood volume. These are disclosed in Wall et al., Simple hypothermic preservation for transporting human livers long distances for transplantation, Transplantation, 23:210 (1977); Belzer et al., Combination perfusion-cold storage for optimum cadaver kidney function and utilization, Transplantation 39:2, 118-121, (1985). Haff et al., Journal of Surgical Research 19:1, 13-19 (1975) describe the asanguineous hypothermic perfusion of dogs using two solutions: the first, a flush solution comprised of pooled delipidated homologous plasma and electrolytes, and the second comprised of pooled delipidated homologous plasma, electrolytes and additional potassium chloride at a concentration of 10 milliEquivalents/liter (mEq/l). Haff et al also disclose the use of a pulsatile pump oxygenator and hypothermic perfusion with their solutions and suggest that the procedures could be used for long distance transport of cadaver organ donors and as an alternative to hypothermic circulatory arrest for blood-free intricate surgery.
Non plasma-based solutions for organ preservation are disclosed in Bishop et al., Evaluation of hypertonic citrate flushing solution for kidney preservation using the isolated perfused rat kidney. Transplantation 25:5, 235-239 (1978). This article discloses a perfusion solution that included 50 g/liter dextran 40, a concentration that differs markedly from those of the solutions of the present invention. In addition, the electrolyte and ion concentrations differ markedly from those disclosed for the present invention.
Segall et al., Federation Proceedings 44(3):623, (1985) disclose that a Ringer's lactate-based heparinized blood substitute containing 6% dextran 40 was used to lower the body temperature of hamsters prior to the circulation of cold-protective solutions, which are not disclosed, for 1 to 1.5 hours.
Segall et al., (1987) Federation Proceedings, page 1338, disclose that a blood substitute, which included dextrose (180 mg/dl) and 25 mM HEPES, was used to perfuse a dog to 3° C. when perfusion was stopped entirely. There is no disclosure of the complete composition of the blood substitute.
Segall et al, U.S. Pat. No. 4,923,442 and the reissue thereof disclose a number of solutions used in blood substitution of living subjects all of which include at least some concentration of a cardioplegia agent, usually potassium ion. Segall et al., U.S. Pat. No. 4,923,442 also discloses surgical methods, particularly in respect to instrument placement and the control of pulmonary wedge pressure generally applicable to perfusion of subjects. U.S. Pat. No. 4,923,442 and its reissue are incorporated herein by reference.
Segall et al., U.S. Pat. No. 5,130,230 discloses a blood substitute which may be used as a system of solutions in which a number of solutions, in some embodiments two solutions and in other embodiments four solutions, are used sequentially to completely replace the blood of living subjects. In one of the embodiments, one of the solutions, identified as the recovery solution, of a four solution system is disclosed as having, in addition to several dissolved salts and other constituents, dissolved potassium chloride in a concentration range of 0 to 10 mM. In describing the blood substitute, the specification of U.S. Pat. No. 5,130,230 discloses that the blood substitute comprises “an aqueous solution of electrolytes at physiological concentration, a macromolecular oncotic agent, a biological buffer having a buffering capacity in the range of physiological pH, simple nutritive sugar or sugars, magnesium ion in a concentration sufficient to substitute for the flux of calcium across cell membranes. The blood substitute also includes the forgoing solution and a cardioplegia agent such as potassium ion in a concentration sufficient to prevent or arrest cardiac fibrillation.” Thus potassium ion at physiological concentration is part of the base solution of the disclosed blood substitute. The specification also discloses that concentration of cations including Mg
++
, Ca
++
and K
+
in excess of that normally found in mammalian blood are suitable for exerting a cardioplegia effect. Lastly the specification discloses that the blood substitute may be used as a blood volume expander and that “(f)urthermore if the blood substitute according to the invention is used as a blood volume expander in a subject at non-hypothermic temperatures, the cardioplegia agent described . . . will generally be omitted so that normal cardiac function can be maintained.” From the forgoing it is clear that the blood substitute when used as a blood volume expander at normal body temperatures contains K
+
at physiological concentrations but not in concentrations sufficient to cause cardioplegia.
Commercial products used for the treatment of hypovolemic patients are known and include Hespan (6% hetastarch 0.9% Sodium chloride Injection [Dupont Pharmaceuticals, Wilmington Del.]), Pentaspan (10% pentastarch in 0.9% Sodium chloride Injection [Dupont Pharmaceuticals, Wilmington Del.]) and Macrodex (6% Dextran 70 in 5% Dextrose Injection or 6% Dextran 70 in 0.9% Sodium chloride Injection [Pharmacia, Inc. Piscataway, N.J.]) and Rheomacrodex (10% Dextran 40 in 5% Dextrose Injection or 10% Dextran 40 in 0.9% Sodium chloride Injection [Pharmacia, Inc. Piscataway, N.J.]). These products are known to the medical community for particular FDA approved indications and are extensively described in the volume entitled Physicians' Desk Reference, published annually by Medical Economics Company Inc.
Water-soluble and aqueous colloid preparations of vitamin K are known and are sold respectively under generic names menadiol sodium diphosphate (tradename SYNKAVITE®) and phytonadione MSD, USP (tradename AquaMEPHYTON®) by Roche Labs and Merck Sharp & Dohme, respectively.
SUMMARY AND OBJECTS OF THE INVENTION
It is an object of the invention to provide a blood plasma expander comprising a water soluble polysaccharide oncotic agent supplemented with calcium chloride at physiological concentration.
It is a further object of the invention to provide a blood plasma expander comprising a water soluble polysaccharide oncotic agent supplemented with sodium chloride at physiological concentration and magnesium ion at sub-physiological concentration.
It is a yet further object of the invention to provide a blood plasma expander comprising a water soluble polysaccharide oncotic agent supplemented with sodium

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Solutions for use as plasma expanders and substitutes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Solutions for use as plasma expanders and substitutes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solutions for use as plasma expanders and substitutes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3009567

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.