Non-lead hollow point bullet

Ammunition and explosives – Projectiles – Dumdum or mushrooming

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C102S517000

Reexamination Certificate

active

06546875

ABSTRACT:

BACKGROUND OF THE INVENTION
The firing of small arms ammunition for training, sporting, law enforcement, and military purposes is a major source of environmental pollution, which poses a health hazard to the world population. Lead is a significant environmental and health problem at the numerous public, private, and government-operated shooting ranges. Many of the sites are contaminated with hundreds of tons of lead, the result of years of target practice and skeet shooting. The lead is tainting grounds and water, and is being ingested by wildlife, and thus has become a serious threat to the health and safety of human and animal populations. Indoor ranges pose other serious concerns such as increased lead exposure to the shooter due to the enclosed space and the subsequent need for high capacity ventilation and air filtration systems. Handling of ammunition and contaminated weapons can also produce elevated lead levels in the blood by absorption through the skin.
Since lead is a hazardous material, bullets are being fabricated from alternate metals such as monolithic copper, powder metals in polymer binders, and other mixtures that include powdered metals. Many of the bullets made from the alternate materials are atypical in size and shape because the materials do not have densities less than lead. Emphasis in the development of non-lead bullets has been on products for training where it is believed that these deficits in properties are not of concern. Non-lead bullets for use in service have had little attention. Though many bullet configurations have been produced using non-lead materials, no non-lead hollow-points that mimic the exact shape, design, size, and function of lead hollow-points have been developed.
Full-metal jacket and “soft-point” bullets are not favored for use by law enforcement and security forces. These designs do not readily expand in soft targets and thus over penetrate. The bullets can pass completely through one target and into others. The energy of the bullet is not completely deposited in the target thus less likely producing the desired effect, a one shot stop. These types of bullets also cause more collateral damage and ricochet more easily. Law enforcement and other security and protective forces prefer to use “hollow-point” (HP) bullets to overcome these issues. A hollow cavity is intentionally created in the exposed soft lead nose of the bullet. Upon engaging a soft target, the nose of the bullet quickly expands. The energy of the bullet is thus rapidly deposited in the target. More recent designs incorporate scored or serrated copper jackets, which adds additional control to the expansion process.
Maximum expansion of the head is desirable to maximize hemorrhaging and tissue damage. This maximized expansion maximizes the lethality in game animals. However, if the head expands too much, the bullet will separate into segments which limits the penetration. Accordingly, to obtain significant depth of penetration, the mass of the bullet must remain behind the head.
Hollow point jacketed bullets are well known and are typically made of a lead alloy with a jacket typically made of a copper alloy. The jacket generally covers at least part of the nose or ogive and all of the cylindrical body portions of the bullet. Expansion is obtained by providing a hollow in the front end of the bullet. This type of jacketed bullet produces controlled expansion in soft body tissue. The front end may also be formed with cuts and/or ribs in the jacket or with cuts or ribs in the core within the hollow tip to further control the expansion upon penetration into soft tissue. One typical hollow point jacketed bullet is described in U.S. Pat. No. 3,157,137. A jacketed bullet with a rosette type of hollow point formed entirely from the open jacket end is disclosed. Another is U.S. Pat. No. 3,349,711 describes a bullet which has external cuts in the ogive portion of the full metal jacket around the hollow tip. Another example is U.S. Pat. No. 4,550,662, in which is discussed a bullet where the hollow tip is formed with axially extending ribs in the soft metal core. Another hollow point jacketed bullet, using aluminum for the jacket, is disclosed in U.S. Pat. No. 4,610,061. In this patent, the jacket extends part way into the hollow and cuts are made in the jacket at the rim of the hollow point to control deformation and ripping of the jacket during expansion. All of the bullets provide relatively predictable expansion in soft tissue, and all are fabricated employing similar techniques; a hollow cavity is formed in a lead core which is seated in a thin metal cup or jacket.
The fabrication of a bullet with controlled expansion employing non-lead materials is not trivial. Functional hollow point bullets are being fabricated from copper; however, ballistic performance suffers due to the lower density of the copper as compared to lead. A hollow-point made using the plastic-bonded powder metal composite materials does not expand, but instead fragments in a soft target. Jacketed bullets are also being fabricated from bismuth and zinc; however, hollow-point or expanding bullets are not described.
Hollow-point bullets fabricated from mixtures of tin and tungsten or zinc and tungsten employing a sinterless powder metallurgy technique following U.S. Pat. No. 5,760,331, herein incorporated by reference, were found to fragment. This bullet is shown in FIG.
4
. Fragmentation is undesirable for penetration is minimized and because of forensic and medical concerns. A process to produce a powder metal hunting bullet with a hollow point is described in U.S. Pat. No. 5,722,035. The disclosed embodiment was made from copper or mixtures of copper and tungsten powders, and was pressed and sintered. The performance characteristics of the materials and bullet were not discussed.
No-lead, full-metal jacket and hollow-point bullets are described in foreign patent WO9720185, and details a pistol bullet with a two-piece core, made using two separate materials with different properties. The first portion or segment fills the base of the bullet, and the second piece fills the nose. The first portion is hard and possibly frangible, with materials such as sintered powdered metals or plastic-bonded metals being examples of possible materials. The second is soft and ductile as to permit mushrooming. Emphasis for the nose is placed on zinc or aluminum. A hollow-point with the cavity in the softer nose section is included. The construction of the HP bullets resembles the first unsuccessful version of the bullets described in this invention. Gluing the cores together reportedly solves the problem of separation of the first and second portion of the bullet core. No teaching of shaping the cores during seating to prevent separation and enhance expansion is provided. Construction of HP bullets resembling the examples given in WO9720185 was unsuccessful.
A two-component core has been described for use in a soft-point rifle bullet for hunting (Brenneke TIG or TUG), but involved lead alloys with differing properties. In U.S. Pat. Nos. 5,237,930 and 5,616,642, and similar technologies, powdered metals are mixed with polymer binders, typically nylon. Bullets are formed by melting and molding of the plastic-metal mixture. Although hollow cavities are readily formed in a bullet fabricated from the materials, the plastic-metal composite does not expand. The composite is frangible thus fragments into particles. In addition the density of the polymer-metal composites is less than that of lead thus bullets made from these materials are atypical in size when trying to match the weights of similar designs.
Solid copper hollow-point bullets are described in U.S. Pat. Nos. 5,811,723 and 5,259,320. Annealed copper is soft and through combinations of hollow cavities, slots and grooves, expansion can be achieved. The density of copper however, is 8.9 g/cm
3
which again results in bullets that are either lighter than those made with lead or atypical in size.
Bismuth and zinc have been used to fabricate bullets in U.S. Pat. Nos. 5,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Non-lead hollow point bullet does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Non-lead hollow point bullet, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-lead hollow point bullet will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3002404

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.