Preparation of n-butylamines

Organic compounds -- part of the class 532-570 series – Organic compounds – Amino nitrogen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C564S485000

Reexamination Certificate

active

06492558

ABSTRACT:

The present invention relates to processes for the preparation of n-butylamines and to the n-butenylamines which form as intermediate in this process.
n-Butylamines serve as starting materials for the preparation of surfactants, textile and flotation auxiliaries, bactericides, corrosion and foam inhibitors, additives for pharmaceuticals, and as antioxidants for fats and oils.
Alkylamines, such as butylamines, can be prepared by the hydrogenation of corresponding nitrites or nitro compounds, by the reductive amination of corresponding aldehydes and ketones and by the amination of corresponding alcohols.
The lower alkylamines (C
1-15
-alkylamines), such as, for example, also butylamines (e.g. C
4
-C
15
-butylamines, such as n-butylamine, butylmethylamines, butylethylamines, butylisopropylamines and dibutylamines), are prepared industrially, in particular, by the amination of the corresponding alcohol or of the corresponding carbonyl compound with ammonia, a primary or secondary amine over metal catalysts which are e.g. supported, under hydrogenating conditions (see e.g.: Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 2, 5
th
Ed., page 4).
Alternatively, alkylamines, e.g. butylamines, can also be prepared over acidic phosphate catalysts from corresponding alcohols (see e.g. U.S. Pat. No. 4,582,904 (Air Products)).
A further alternative for the preparation of alkylamines, such as e.g. butylamines, consists in the addition of NH
3
or amines onto olefins in the presence of acidic catalysts, such as e.g. zeolites, see e.g. EP-A-132 736), in the presence of basic catalysts, such as e.g. metal amides, in particular alkali metal and alkaline earth metal amides (see e.g. B. W. Howk et al.,
J. Am. Soc.
76, page 1899ff (1954); R. Stroh et al., Angew. Chem. 69, 124ff (1957)), amides of subgroup IV (see e.g. D. Steinborn et al. (Z. Chem. 29 (1989), page 333ff) or alkali metal alkoxides, or in the presence of transition metal complex compounds (see e.g. U.S. Pat. No. 3,758,586).
EP-A-752 409 (DE-A-195 24 240) describes a process for the preparation of amines by hydroamination of olefin-containing mixtures obtained during the cracking of petroleum fractions, over zeolites, alumosilicates, phosphates, mesoporous oxides, Pillard clays, amorphous oxides or phyllosilicates. In particular, use is made here of butadiene-free C4 hydrocarbon mixtures (page 3, lines 10-12; Examples).
The processes listed above for the preparation of alkylamines have the following disadvantages:
The use of alcohols (e.g. ethanol), aldehydes, ketones and nitriles as starting materials for the preparation of alkylamines, such as butylamines, is significantly less economical on the basis of their costs than the use of corresponding olefins (e.g. ethene).
The use of olefins as starting material for the alkylamine preparation is accordingly desirable, but has hitherto been burdened with the following disadvantages (cf. e.g.: M. Beller et al., Chem. Rev. 98, 675f (1998) 675; R. Taube, “Reaction with Nitrogen Compounds” in B. Cornils and W. A. Hermann: “Applied Homogeneous Catalysis with Organometallic Compounds”, VCH Weinheim, 1996, pages 507 to 520, and E. Haak et al., Chemie in unserer Zeit (1999), 297 to 303, in particular the summary on p. 302):
aa) The addition, under basic and heterogeneous catalysis, of amines onto olefins in the presence of metal oxide catalysts is possible, according to Kakuno et al., J. Catal. 85 (1984), page 509ff, with primary and secondary alkylamines, and conjugated dienes, such as butadiene or isoprene.
ab) The addition, under weakly basic catalysis, of amines onto olefins with alkali metal alkoxide as catalyst is, according to Beller et al., Angew. Chem. 110 (1998), page 3571ff, only successful in the case of aromatically conjugated amines and styrene as olefin component.
ac) In the case of the NaNH
2
- or KNH
2
-catalyzed addition of NH
3
onto olefins, as is described e.g. in B. W. Howk et al., J. Am. Chem. Soc. 76 (1954), 1899-1902 and R. D. Closson et al., U.S. Pat. No. 2,750,417, the space-time yields of desired alkylamines are very low even at high temperatures and olefin pressures amide.
ad) G. P. Pez (U.S. Pat. No. 4,336,162 and 4,302,603) describes a solution approach to the problem given in ac) by changing to the corresponding Rb and Cs amides or by using a eutectic of NaNH
2
and KNH
2
. In the first case, industrial realization is precluded because of the extremely high cost of the catalyst, and in the second case the space-time yields of desired alkylamines are still too low.
b) Over acidic catalysts, such as e.g. zeolites, the addition of NH
3
onto olefins, ammonia generally being used in a high excess based on the olefin, does not proceed in every case with such good selectivities and yields for a certain alkylamine as, for example, in the case of isobutene (see e.g. DE-A-3634247).
 The hydroamination of olefins with secondary amines in the presence of acidic catalysts again generally proceeds in poorer yields and with poorer selectivities than the corresponding hydroamination with ammonia or primary amines.
c) The transition metal complex-catalyzed hydroamination of olefins is generally possible in good yields only with secondary alkylamines (e.g.: Brunet, Gazzetta Chimica Italiana, 127, 1997, pages 111 to 118, page 112, left-hand column).
The two earlier German applications No. 10030619.5 from Jun. 28, 2000 and No. 10041676.4 from Aug. 24, 2000 describe a process for the preparation of alkylamines where, in a first process stage, an olefin is reacted with ammonia, a primary amine and/or a secondary amine under hydroaminating conditions, and then the resulting hydroamination product(s) is/are reacted in a second process stage under transalkylating conditions. The use of 1,3-butadiene in the form of a 1,3-butadiene-containing mixture obtained during the cracking of petroleum fractions or during the dehydrogenation of LPG or LNG or from GTL technology as olefin component is not disclosed herein.
A disadvantage of many processes for the preparation of amines from olefins is that the isolation of pure olefins or mixtures of pure olefins from mixtures obtained during the cracking of petroleum fractions is complex and expensive.
The complex separation of 1,3-butadiene from the C4 cut is described, for example, in K. Weissermel and H. -J. Arpe, Industrielle Organische Chemie [Industrial Organic Chemistry], 4th edition 1994, VCH Verlagsgesellschaft, page 76.
It is an object of the present invention to find, while overcoming the disadvantages of the prior art, an alternative, economical and flexible process for the preparation of n-butylamines which permits the preparation of a desired n-butylamine or two or more desired n-butylamines with high space-time yield and selectivity.
We have found that this object is achieved by a process for the preparation of n-butylamines which comprises firstly preparing n-butenylamines by reacting 1,3-butadiene in the form of a 1,3-butadiene-containing mixture obtained during the cracking of petroleum fractions or during the dehydrogenation of LPG or LNG or from GTL technology with a primary amine and/or a secondary mind under hydroaminating conditions and then reacting the resulting butenylamine(s) in a second process stage under hydrogenating and transalkylating conditions.
The 1,3-butadiene-containing mixtures preferably originate from the following sources:
a) C4 cuts which are produced on an industrial scale during the thermal or catalytic cleavage of petroleum fractions, such as, for example, petroleum spirits, in particular naphtha (steamcracking; see e.g. K. Weissermel and H. -J. Arpe, Industrielle organische Chemie [Industrial Organic Chemistry], 4th edition 1994, VCH Verlagsgesellschaft, pages 70-76);
b) hydrocarbon streams from the dehydrogenation of LPG or LNG, preferably C
4
cuts therefrom, where the C4 fraction of the LPG stream is separated off from the LPG stream before or after the dehydrogenation. A LNG stream with high C1 and C2 can here be converted beforehand into C4, for example via an MT

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Preparation of n-butylamines does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Preparation of n-butylamines, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Preparation of n-butylamines will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2997351

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.