Multi-purpose lighting system for airports, roads or the like

Electric lamp and discharge devices: systems – Plural load device systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C315S292000, C315S320000

Reexamination Certificate

active

06489733

ABSTRACT:

FIELD OF AND BACKGROUND OF THE INVENTION
This invention relates to a lighting system, which may be used, for example, as an airport lighting system, as a street lighting system, as an obstruction light, as an illuminated sign, as a warning light, or as a signal light or the like.
German Patent DE-A-42 32 618 and International reference WO 90/04242 A teach a lighting system, which includes a unit for monitoring and controlling light sources or groups of light sources of a lighting system. These light sources may be designed as blister lights. Each of these light sources has at least one lighting unit. This lighting unit is associated with a transceiver device, which is equipped with a microcontroller. Via the power supply line of the lighting system, the transceiver device is connected with a central station, which can selectively control the microcontroller of the respective transceiver device. For this purpose, the central station is equipped with a transceiver unit and a control computer. The microcontroller of each lighting unit is part of a decentralized control device, which includes application-specific components, e.g., switching elements, monitoring elements, and adjusting elements. In addition, in the lighting system disclosed in WO 90/04242 A, each transceiver device is embodied as a module part. This module part includes switching components and monitoring components, which are connected upstream from the microcontroller and the lighting unit of the blister light.
A similar lighting system is disclosed in European Patent EP-A-0 723 384. This lighting system is designed as a safety lighting system, wherein, in case of a power failure, the individual light sources of the lighting system are supplied with battery power. For this purpose, each of the light sources or each group of light sources is associated with a change-over switch device. In case of a power failure, the change-over switch device permits a switch over to battery operation. In this safety lighting system, the change-over switch devices of the light sources or of the groups of light sources are part of a decentralized control unit. Therein, the control unit includes power-on elements, power-off elements, and monitoring elements.
European Patent EP-A-0 900 882 discloses a lighting system, which includes blister lights and which is intended for traffic control. In these blister lights, light emitting diodes are used as the lighting unit. Via connection leads, each individual light emitting diode is connected to a printed circuit board, which is arranged at a location remote from the light emitting diodes. Furthermore, drive components are provided in the blister lights, which drive the light emitting diodes.
U.S. Pat. No. 4,924,364 discloses a blister light for airports. Therein, the lighting unit is an electric lamp, which, together with the optical unit of the blister light, can be separated from the remaining components of the blister light. For this purpose, an optical block, which includes the electric lamp, is vertically removed from the blister light.
OBJECTS OF THE INVENTION
It is one object of the present invention to improve a lighting system, such as the one known from the above referenced WO 90/04242 A, so as to permit a more compact design of the blister lights or of the light sources.
SUMMARY OF THE INVENTION
This and other objects are achieved by a lighting system, which includes a plurality of blister lights, which, in turn, have at least one respective lighting unit. The lighting system furthermore includes a device for monitoring and controlling the blister lights. A transceiver device, which includes a microcontroller, is associated with the lighting unit. In addition, the system includes a central station, which has a transceiver part and a control computer. The central station is connected to the transceiver device via a power supply line and a router and is configured to supply control commands to the transceiver device. The microcontroller is structured as a component of a decentralized control device, which includes application-specific components. Each transceiver device is structured as a module part; wherein the module part has switching components and monitoring components, which are connected upstream from the microcontroller and the lighting unit of the blister light. The switching components and the monitoring components of the module part are disposed on a sickle-shaped printed circuit board. The module part is disposed next to the lighting unit and at the same level as the lighting unit of the blister light.
The inventive embodiments of the printed circuit board and the arrangement of the module part at the level of the lighting unit allow for a flatter design of the blister lights or light sources than achieved in the prior art.
Lighting systems according to the invention are well suited for small airports, heliports, mobile airport equipment, field airstrips, landing places or the like. In addition, the lighting system according to the invention is advantageously applied in street lighting systems, e.g., to indicate temporary traffic lane changes or the like.
If the lighting unit of the lighting s stem according to the invention is formed by a plurality, or a cluster, of light emitting diodes (LEDs), the power supply of the individual lighting units can be reduced. The life span of the lighting units thus designed is significantly increased, so that the maintenance intervals of the lighting system are increased too. This results in significantly reduced maintenance costs. Due to the lower power consumption and maintenance expenditure, the lighting systems according to the invention can be operated much more cost-effectively than conventional lighting systems of this type. As an alternative to the embodiment of the lighting units as light emitting diodes (LEDs), the lighting units may also be formed by light emitting polymers, which provide similar advantages.
To further reduce the technological complexity for controlling and monitoring the lighting systems according to the invention, it is advantageous if the decentralized control units of the lighting system are designed as a LON (Local Operating Network).
In a preferred embodiment of the invention, the microcontroller is designed as a one-chip controller, which provides significant savings with respect to the technical-structural complexity and with respect to costs.
The microcontroller advantageously includes an EEPROM; a RAM; three CPUs; a clocking-and-control-block, which has clock/timer elements; an application input/output block; and a communications port. The EEPROM, the RAM, the three CPUs, the application input/output block, and the communications port are interconnected by means of an internal address bus and by means of an internal data bus. The EEPROM, the RAM, the three CPUs, the application input/output block, the communications port, and the clocking-and-control-block are interconnected by means of a timing-and-control circuit.
Advantageously, the EEPROM of the microcontroller has a memory capacity of 512 bytes and is capable of storing network parameters and application programs.
It is advantageous, if each of the three CPUs of the microcontroller is designed as an 8-bit CPU. Thereby, one of the three CPUs of the microcontroller can be used for application programs.
The two other CPUs of the microcontroller can be used for LONTALK protocol processing, wherein the processable protocols include all seven layers of a reference model in accordance with ISO/OSI standards.
The application input/output block can advantageously be used as a parallel interface to an external microprocessor, which has eight data lines and three control lines.
According to one embodiment of the invention, the application input/output block of the microcontroller has a 16-bit load register, a counter, a buffer memory (latch), a clock source, four 20 mA sink current pins, four programmable pull-ups, and possibly additional elements.
The communications port of the microcontroller is advantageously provided with five network interface

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multi-purpose lighting system for airports, roads or the like does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multi-purpose lighting system for airports, roads or the like, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-purpose lighting system for airports, roads or the like will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2995340

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.