Apparatus for ozonating a dry cleaning machine after a...

Bleaching and dyeing; fluid treatment and chemical modification – Fluid treatment – Manipulation of liquid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C008S159000, C062S091000, C062S183000, C062S091000

Reexamination Certificate

active

06460211

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an electro mechanical device to inject ozone into a dry cleaning machine which uses organic solvent such as perchloroethylene. More specifically, my invention is primarily intended to provide a user such as a dry cleaning employee a system to inject ozone in a closed loop into a dry cleaning machine to eliminate odors and gas such as perchloroethylene gas in a convenient, economical and environmentally safe way. The present invention can be utilized with an existing dry cleaning machine or can be utilized with the construction of a new dry cleaning machine. The present invention also relates to a method of injecting ozone into a dry cleaning machine after the solvent cycle to eliminate any residual perchloroethylene gases left in the wheel housing and to recirculate any residual perchloroethylene gas that has gravitated outside the wheel housing.
2. Description of the Prior Art
The utilization of ozone in the washing and dry cleaning business is well known. Ozone is a molecule consisting of three oxygen atoms which a triatomic allotrope of oxygen which consist of two oxygen atoms. When oxygen is passed through an electrical field, the electrical field breaks apart the oxygen molecules into free atoms. These singular oxygen atoms then bond to oxygen atoms to form ozone molecules.
When ozone comes in contact with odors, oxidation reoccurs, resulting in the elimination of the odors and the release of oxygen. As formed, ozone is a positively charged molecule which attracts to negatively charged molecules such as organic and hydrocarbon stains found in greases, fats and oils. When the ozone is injected into a cleaning solvent, it reacts chemically with the stains causing the stains to break up into smaller pieces. Further, ozone acts as a bactericide and is the strongest oxidant commercially available with results thousands of times faster than chlorine. Additionally, ozone eliminates odor causing bacteria by cell lysing where the ozone molecule molecularly ruptures the bacteria membrane destroying the bacteria in a matter of seconds. This process eliminates the bacteria and thus prevents any ozone resistant strains from forming. Chlorine on the other hand takes up to thirty to sixty minutes to eliminate the bacteria.
Accordingly, ozone is commonly used in the wash and dry clean industry as the ozone efficiently breaks down organic compounds resulting in less cleaning chemicals used in the cleaning operation. Thus, the use of ozone in the cleaning industry produces a number of significant environmental benefits and cost savings as less chemical results in less pollutants and less production costs. With the beneficial properties of ozone, however, come hazards. Ozone is highly toxic when directly exposed to humans. OSHA regulates that the maximum allowable limit for an eight hour period is 0.10 parts per million. Utilization of ozone in the cleaning industry typically results in off gases of the ozone in that all the ozone is not used and dispenses into the air. Ozone, fortunately, however is not a stable gas and breaks down into oxygen in about thirty minutes in open air.
In the dry cleaning industry, a solvent is used to clean the load of articles as opposed to a wash system. In a wash system, water is treated with a cleaning chemical which then in turn washes the load of articles such as clothing. Today, the common solvent presently used is perchloroethylene hereinafter referred as “perc.” Perc is an exceptionally effective solvent as it dissolves virtually all organic stains, including oils, greases, fats and waxes resulting in minimized need for pre-spotting and re-working. Perc penetrates fibers quickly and dissolves soils resulting in shorter cleaning cycles.
Perc is chemically and thermally stable under normal conditions of use but it does require proper handling and use. Exposure to continual and extremely high vapor concentrations can cause severe depression of mental functions, respiratory failure and even death. Further, prolonged and repeated contact will cause rough and dry skin leading to infection. Also, if swallowed, perc may cause serious liver effects and possibly death. Further, perc may be cancer causing. In fact, the State of California, under California Proposition 65 has listed perc as a chemical known to the state to cause cancer.
As such, steps need to be taken to reduce exposure to perc. In the dry cleaning operations, the door to the wheel housing should be closed at all times except when transferring a load of articles. When a wheel housing door is opened, residual perc gases gravitates to the floor as perc is heavier than air. Thus perc is not readily diluted in the air but exists in the room. Further, utilizing a closed loop system should be used to limit exposure as a closed loop does not expose the solvent to the air. After the dry clean step in most cycles, perc residue remains on the clothes as the deodorizing step does not terminate all perc. Thus, a customer will bring perc back to their home. Accordingly, public exposure should be minimized by cutting down on residual perc in cleaned garments.
In the present state of the art, a dry cleaning system and method does not exist to inject ozone directly into a wheel housing after the solvent cycle to reduce perc residue gas remaining on the load of articles. Further, in the present state of the art, a system does not exist to reduce off gases such as perc that travels outside the wheel housing when the door is opened. The state of the art is such that present dry cleaning equipment and methods utilize ozone to clean during the solvent cycle.
In U.S. Pat. No. 5,511,264 issued to Nishioka discloses a method for deodorizing and refreshing for dry cleaning. This invention uses a solvent such as perc in a dry cleaning apparatus having a cleaning bath, a solvent storage tank and a circulating pump. The components are interconnected so that the perc is pumped from the solvent storage tank by the circulating pump to be supplied to the cleaning bath through the path and the solvent is returned from the cleaning path to the solvent storage tank. In this method, an ozone generating device injects ozone directly into the solvent as fine bubbles. The ozone generating device injects ozone into the bottom of the solvent tank by using a diffuser where the diffuser spreads the ozone uniformly into the solvent. Thus, the load of articles is cleaned with ozonated solvent during the solvent cycle. After, the solvent cycle, the load of articles is dried and removed from the machine. The ozonated solvent is returned through filters to the solvent storage tank.
Limitations exist, however, with this system and method of deodorizing for dry cleaning. Although the ozonated solvent is filtered for reuse, the method still leaves perc residue on the load of articles as the perc is mixed with the solvent. Thus, the public has exposure of perc as it remains on clothes to be brought back. Further, the system and method leaves off gas ozone and perc gas residue inside the clean bath of the dry clean machine. Thus, when a door to the clean bath is opened, perc gas residue will gravitate near the floor surface exposing users in the room as the system and method does not draw this gas residue to an ozone generator to be recirculated.
U.S. Pat. 5,195,252 issued to Yamada discloses a method for dry cleaning as well as a method for recovery of solvent. In this method, an open system is used where outside air is brought into a treating drum of a dry cleaning machine. After the contents of the treating drum are treated with a solvent such as perc, the treating drum is stopped. An upper opening located in the treating drum is then opened. Simultaneously, a lower opening located at the bottom of the treating drum is slowly opened and exhausts the solvent into a treating tank. Thus, the solvent is replaced during this open cycle with the outside air.
This method, too, contains limitations. First, the system is an open system which is not recommended for perc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for ozonating a dry cleaning machine after a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for ozonating a dry cleaning machine after a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for ozonating a dry cleaning machine after a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2991407

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.