Polycarbonate blends and method of making same

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S462000, C528S204000

Reexamination Certificate

active

06462146

ABSTRACT:

BACKGROUND OF INVENTION
This application relates to compatabilized polycarbonate blends and to a method of making same.
Polycarbonates are a well known class of high impact resistant thermoplastic resins characterized by optical clarity, high ductility as well as other advantageous properties. They are frequently employed as lenses and windows as a result of their transparency. Bisphenol A (BPA) polycarbonate is the predominant commercially available resin of this type. It is derived from 2,2-bis(4-hydroxyphenyl)propane and ordinarily has a glass transition temperature of about 150° C.
It is of increasing interest to prepare polycarbonates which, while retaining the ductility of BPA, have higher glass transition temperatures and are therefore more resistant to softening when heated. Polycarbonates possessing increased glass transition temperatures are very desirable, for instance, in the automotive and aircraft industries. Particularly, they may be used in the preparation of automotive headlamp lenses which are becoming smaller in size and characterized by closer proximity of the lenses to the heat-generating light source.
Current approaches to high heat polycarbonate involve polymerizing BPA with a monomer with that increases the copolymer glass transition temperature (Tg). This improvement usually comes at the expense of other polymer properties. For example, Bayer has commercialized a family of copolymers based on Bisphenol I, which provide higher Tg at the expense of reduced ductility. Bayer APEC DP9-9340 resin gives a Tg of 177 E C and a 23 E C notched izod impact of 6 ft-lb/in, as compared to a Tg of 150° C. and a 23° C. notched izod impact of 14-16 ft-lbs/in for BPA homopolymer.
U.S. Pat. No. 5,480,959 disclosed substantially pure bisphenols; in particular, 4-[1-[3-(4-hydroxyphenyl)-4-methylcyclohexyl]-1-methylethyl]phenol (hereinafter referred to as BPT-1) and 4,4′-[1-methyl-4-(1-methylethyl)-1,3-cyclohexandiyl]bisphenol (hereinafter referred to as BPT-2). These materials can be used to make homopolycarbonates that possess increased glass transition temperatures on the order of about 198° C. when employing BPT-1 and about 249° C. when employing BPT-2. Unfortunately, these materials do not have the toughness of BPA.
A copolymer of BPT1 and BPA (35:65 mol %) was reported to have a glass transition temperature of 171° C. and a 23° C. notched Izod impact strength of about 3.8 ft-lbs/in. The production of copolymers to attain specific characteristics is not optimum, however, because it requires a separate manufacturing run for each type of product. This increases the cost. Thus, a preferred approach to the manufacture of products with a spectrum of characteristic properties is to have a limited number of feedstock polymers which can be blended to arrive at mixtures with the desired properties. In the case of BPA, one seeming option would be mixing BPA with BPT1 or BPT2 to arrive at blends having high Tg values. This approach has not worked, however, because BPA. is not miscible with BPT1 or BPT2.
It would be desirable to have a method for modifying the thermal characteristics of polycarbonate to increase the glass transition temperature, that does not result in the a significant degradation of the impact properties of the polymer, and which can be carried out using blends of a limited number of feedstock polymers.
SUMMARY OF INVENTION
It has now been determined that copolymers of BPA and menthane bisphenols such as BPT1 and BPT2 can be used as a compatabilizer to allow the formation of homogeneous blends of BPA with menthane bisphenol polycarbonates such as poly-BPT1 or poly-BPT2 or copolymers thereof. Thus, the present invention provides a method for making a compatible polycarbonate blend comprising the steps of (a) combining a bisphenol A polycarbonate, a menthane bisphenol polycarbonate and a BPA/menthane bisphenol copolymer compatabilizer, and(b) mixing the combined materials to form a blend. The compatabilizer may contain one or more species of menthane bisphenol. In one embodiment, BPT1 and BPT2 are used in the compatabilizer in a ratio, BPT1/BPT2, in the range of 70/30 to 10/90, preferably less than or equal to 1/1, for example around 30/70. By adjusting the relative amounts and the properties of the bisphenol A polycarbonate and the menthane bisphenol polycarbonate, the glass transition temperature and the toughness of the blend can be selected.


REFERENCES:
patent: 4129546 (1978-12-01), Axelrod
patent: 4948871 (1990-08-01), Fuknoka et al.
patent: 5204377 (1993-04-01), Fukawa et al.
patent: 5214073 (1993-05-01), Fukawa et al.
patent: 5480959 (1996-01-01), Schmidhauser
patent: 5580951 (1996-12-01), Silva et al.
patent: 0 982 340 (2000-03-01), None
patent: 09-068817 (1997-03-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polycarbonate blends and method of making same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polycarbonate blends and method of making same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polycarbonate blends and method of making same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2990575

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.