Low level light therapy method and apparatus with improved...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Light application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S009000, C606S011000

Reexamination Certificate

active

06471716

ABSTRACT:

This invention relates to photo-therapy or low level light therapy (LLLT) used is to stimulate natural healing functions. More particularly, the present invention relates to a new and improved method and device for delivering therapeutic light energy, preferably non-coherent infrared light, which makes use of relatively inexpensive light emitters that are controlled to increase the amount of light energy absorbed by the tissue while still increasing the useable longevity of the emitters under a variety of different portable and use conditions.
BACKGROUND OF THE INVENTION
Photo-therapy is the application of light energy to biological tissue for the purpose of stimulating certain biological functions, such as natural tissue healing and regrowth processes. Alternatively, a higher power level of photo-therapy may inhibit natural biological functions of the tissue or destroy the tissue, as may be applied in the case of cancerous tissue.
The exact nature of the benefits or effects of photo-therapy on the tissue are not known with certainty. However, many studies have shown that a low level of light and/or heat radiation on tissue is associated with enhanced tissue healing.
Therapists have used photo-therapy to treat a variety of illnesses, injuries and conditions. For example, photo-therapy has been used to treat soft tissue injuries such as capsulitis, bursitis, sprains, strains, hematomas and tendinitis; acute and chronic joint problems such as osteoarthritis, rheumatoid arthritis, and ligament and tendon injuries; chronic pain such as post herpetic neuralgia, chronic back and neck pain, metatarsalgia, trigeminal neuralgia, brachial neuralgia, plantar fisciitis, frozen shoulder and carpal tunnel syndrome. Photo-therapy has also been used to treat non-union and small bone fractures, among other things. Photo-therapy has been used to treat herpes, apthous ulcers, leg ulcers, dermatitis, wound healing, burns, acute epididymitis, otorhinolargngology, gynecology, obstetrics, superficial AP stimulation and tonification, cosmetic imperfections and acne, among other things.
Generally, photo-therapy is accomplished by radiating light energy into a patient's tissue at or below the skin or surface of the tissue. The radiation is applied at wavelengths either in the visible range or the invisible infrared (IR) range by placing the light source in close proximity to, even touching, the patient's skin. Photo-therapy may also be accomplished by applying coherent and non-coherent light energy, lased and non-lased light energy, and narrow and broadband light energy, in either a continuous or pulsed manner. The radiation energy is also typically applied at a low power intensity, typically measured in milliwatts. The relatively low radiation energy applied in therapy is called low level light therapy (LLLT).
Visible light radiation typically provides therapeutic effects at the surface of the tissue, i.e. at the skin. IR radiation has a wavelength that penetrates through the skin to achieve deeper therapeutic effects on subcutaneous and deeper tissue. The depth of the therapeutic effect has to do with the absorptivity of the tissue to which the radiation is applied. Deep tissue include substantial water but the skin is relatively dry. The absorptivity characteristic of water peaks at radiation wavelengths of about 900 nm. IR radiation in range of wavelengths from 760-1260 nms penetrates into the deeper sub-dermal tissue. Deeper tissue treatment is useful for healing musculoskeletal injuries, for sports therapy, for reaching deeper acupuncture and myofascial trigger points, and for healing deep wounds, among other things.
Since 900 nm wavelength radiation achieves maximum penetration into most tissue, it is advantageous to supply IR radiation at or near a 900 nm wavelength. Light sources that emit radiation near a 900 nm wavelength are lasers, and lasers are expensive and/or difficult to operate. Examples of radiation emitting sources operative at a 900 nm wavelength include helium neon (HeNe) lasers, alexandrite, titanium sapphire, chromium doped fluoride lasers, and semiconductor diode lasers. The relatively high expense of these types of lasers makes it economically feasible to incorporate only a single one, or a few, of such radiation sources in a photo-therapeutic device. With the reduced number of light emitting sources, the effective treatment area may become substantially limited to a relatively small area.
Other types of radiation light sources such as conventional non-coherent IR light emitting diodes (LEDs) may be employed, but the radiation emitted from such devices typically falls well outside of the peak absorptivity range for water. Using such light source devices achieves less-than-optimal energy penetration and absorption within the tissue. Gallium aluminum arsenide (GaAlAs) LEDs have a room temperature radiation wavelength of approximately 880 nm. Even though this radiation wavelength is closer to the 900 nm peak absorptivity wavelength for water, it is still not optimum for maximum energy absorption. Furthermore, GaAlAs LEDs are more expensive than other types of non-coherent IR LEDs, thus adding a cost consideration to the overall price of the photo-therapy device. In addition, non-coherent IR LEDs are prone to burn out after prolonged periods of continuous use.
One approach to avoiding premature failure resulting from long time periods of continuous use of non-coherent IR LEDs in photo-therapy devices is to pulse the IR LEDs on and off. Pulsing at a predetermined duty cycle adds to the useful longevity of the device because it is only energized on a part-time basis. Pulsing increases the useful life of the device, thereby somewhat offsetting the high cost of the light emitting devices.
One problem with pulsing the photo-radiation sources, particularly a large array of IR LED sources, is that the entire array is turned on and off at the same time, causing substantially large changes in the amount of current conducted by the IR LED sources during the on time period compared to the time periods when the LED sources are nonconductive. The circuit elements necessary to create and sustain such current differentials are themselves large and expensive.
The current conducted by the IR LED sources causes them to heat. The wavelength of the IR radiation emitted is related to the temperature of the LEDs. If the temperature of the LEDs can be controlled, the operating wavelength of energy emitted can be controlled. More precisely controlling the wavelength of the emitted energy can enhance the effectiveness of the treatment. However, thermal instability of many IR sources makes it difficult or impossible to control the effectiveness of the wavelength of the emitted radiation.
Another disadvantage of many photo-therapy devices is the inability of the devices to operate on a wide range of voltage inputs. This restriction prevents photo-therapy and LLLT devices from being portable and convenient to use, since they must generally be connected to a conventional commercial AC mains power supply. This power supply restriction effectively limits the photo-therapy and LLLT devices for use only at home or in a treatment facility, where a ready source of AC power is available. Thus, most existing photo-therapy or LLLT devices cannot be used in a vehicle to provide treatment for chronic pain when sitting and driving for long periods, or on a sports field to provide immediate treatment for sporting injuries, or by an emergency medical team to provide early treatment to accident victims.
Photo-therapy is sometimes applied conjunctively with heat therapy. A heat source in the photo-therapy device will transfer heat to the surface of the tissue. For deep tissue treatment, surface heating is entirely impractical, since the surface tissue would have to be heated to intolerable temperatures to effectively penetrate to the deeper tissue. The deep penetrating IR wavelengths are preferable for use in deep tissue treatment.
It is with respect to these and other considerations, that the present invention h

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low level light therapy method and apparatus with improved... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low level light therapy method and apparatus with improved..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low level light therapy method and apparatus with improved... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2987912

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.