Energy-saving occupancy-controlled heating ventilating and...

Automatic temperature and humidity regulation – With timing element – Timer other than clock

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C236S051000, C165S209000

Reexamination Certificate

active

06349883

ABSTRACT:

TECHNICAL FIELD
This invention relates to energy saving in heating ventilating and air-conditioning (HVAC) systems, and more particularly it relates to selective distribution of HVAC energy from a central HVAC power unit to various remotely located utility output channels such as individual rooms in a building in response to local control parameters featuring operation temperature, energy cycling periods and occupancy status.
BACKGROUND ART
Local in-room air conditioners for individual rooms such as hotel rooms have been controlled automatically from in-room motion detecting power control units to produce energy savings as disclosed in U.S. Pat. No. 5,538,181 granted Jul. 23, 1996 to Michael L. Simmons, et al. for AUTOMATIC ROOM OCCUPANCY CONTROLLED FUEL SAVINGS SYSTEM FOR AIR CONDITIONING/HEATER UNITS.
Our pending parent application U.S. Ser. No. 09/246,723 filed Feb. 9, 1999 now U.S. Pat. No. 6,179,213 for UNIVERSAL ACCESSORY FOR TIMING AND CYCLING HEAT, VENTILATION AND AIR CONDITIONING ENERGY CONSUMPTION AND DISTRIBUTION SYSTEMS provides an inexpensive, comprehensive, universally applicable programmable retrofit accessory for interactively controlling established thermal/ventilating systems to implement designated energy releasing parameters such as operating temperature, operating control cycle periods and site occupancy for selectively delivering HVAC energy at a common energy source and utility site such as a home or hotel room with a resident HVAC energy supply unit. Provisions are made for long range energy control at an inactive occupancy site such as an uninhabited vacation home, which is used sporadically, thereby to protect indoor plumbing from freezing with reduced energy costs, etc.
However this background art is not suitable in more complex HVAC systems such as those with rooftop HVAC energy sources serving different rooms or zones in a residence or commercial building for simply and inexpensively optimizing energy savings by coordination of multiple energy delivery conduits active in these systems. There remains a significant unsolved problem of optimizing energy savings in complex HVAC energy supply systems serving multiple energy output channels at different localities from a central HVAC source. Thus, the control units which have been restricted to individual control of a single HVAC energy delivery source at the energy delivery site do not optimize energy savings in systems where a common HVAC energy source such a rooftop unit serves a set of remotely residing thermostatically controlled rooms or zones having different uncoordinated energy demands that are likely to cause system operating problems such as failures when exceeding peak capacity or inability at times to produce sufficient HVAC energy demands at various utility sites being served.
Although electronically controlled and computerized automated HVAC control and energy distribution systems for different rooms or regions from remote HVAC conditioners are well known in the prior art, there is no known inexpensive and simply retrofittable system control accessory that coordinates or controls the system for optimizing energy savings as a function of occupancy at a plurality of utility sites for generating energy savings. In particular, In particular, complex HVAC energy control systems have not coordinated multiple energy outlets for energy savings, nor have they initiated modes of operation saving energy as a function of occupancy at diverse energy delivery sites.
Typical of the conventional HVAC system prior art is U.S. Pat. No. 6,009,939 by R. Nakanishi, et al., granted Jan. 4, 2000 for DISTRIBUTED AIR CONDITIONING SYSTEM. This system employs a central monitoring and control board for several sources of heat energy supplying different rooms or zones to be air conditioned. However, this system operates with only the temperature input parameter and furthermore does not disclose an energy savings mode of operation.
Another such U.S. Pat. No. is 5,711,480 granted Jan. 27, 1998 to B. E. Zepke, et al. for LOW-COST WIRELESS HVAC SYSTEMS. A master control system is therein wirelessly connected to control several utility centers such as rooms in a residence or hotel from a remote common HVAC energy source. This system also fails to operate in an energy savings mode and fails to address multiple interactively designated control parameters at the several local energy delivery sites.
Thus, this conventional type of prior art does not provide systems for optimizing energy savings systems. Nor does it address and coordinate multiple interacting control parameters or sporadic habitation of the energy utility sites being controlled. It does not address problems related to automatic reduction of energy in the absence of occupancy such as found in sporadically used vacation residences, commercial buildings unoccupied at night, hotels with variable occupancy in leased rooms, and the like.
Therefore, it is an objective of this invention to automatically control the HVAC energy dispensed to a plurality of utility zones such as rooms remotely located from a central energy delivery and control system that responds to multiple control parameters including occupancy of various remotely located energy utility sites.
It is another object of this invention to provide automated HVAC controls for optimizing energy savings by interactive local temperature ranges and energy on-off cycling times coordinated for a multiplicity of remote system wide utility sites while avoiding operating failures such as overloads of the HVAC energy supply source.
Other objects, features and advantages of the invention will be found throughout the remaining description and the accompanying drawings and claims.
DISCLOSURE OF THE INVENTION
A comprehensive automated HVAC energy delivery system is afforded by this invention to distribute energy available from a central common HVAC energy source to a set of remote utility zones, such as rooms in a house or hotel or in different locations in a commercial building, in response to independent control parameters established locally at the various utility zones in the set. Thus a retrofittable universal type control unit typically located at the common energy source site controls distribution of HVAC energy in response to input control parameters derived in-situ from local control units at the utility zones remotely positioned from the energy source site.
Energy distribution is controlled as a function of local temperature requirements and timing cycles of a nature interactively specified from individual control units at the various local energy utility sites remotely positioned from a common energy source site for the system, Independent control parameters at each utility site are coordinated for system operation in an energy saving mode.
Provisions are made for reducing energy as a function of utility site occupancy by reducing or switching off energy delivery from the common HVAC energy source to the individual utility sites during uninhabited or inactive periods in response to both (a) passively scheduled periods of reduced energy delivery in response to local temperature range settings for choosing both high and low alarm levels, thereby specifying a temperature range for delivering reduced energy and (b) in response to active and dynamic occupancy detection at the local utility sites, such as with motion detectors.
Other objects, advantages and features of the invention will be found throughout the following drawings, description and claims.


REFERENCES:
patent: 5165465 (1992-11-01), Kenet
patent: 5538181 (1996-07-01), Simmons et al.
patent: 5603758 (1997-02-01), Lincoln et al.
patent: 5711480 (1998-01-01), Zepke et al.
patent: 6009939 (2000-01-01), Nakanishi et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Energy-saving occupancy-controlled heating ventilating and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Energy-saving occupancy-controlled heating ventilating and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Energy-saving occupancy-controlled heating ventilating and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2985134

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.