Respiratory mask

Surgery – Respiratory method or device – Face mask covering a breathing passage

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S205250, C128S206210, C128S207130, C128S912000

Reexamination Certificate

active

06467483

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates, in general, to respiratory masks and mask couplings and, more particularly, to respiratory masks having flexible seals adapted to receive portions of a patient's face for preventing leakage of gas supplied to the patient, forehead cushions for use with such masks, and conduit couplings having an exhaust port to exhaust CO
2
laden air.
2. Description of the Related Art
A variety of respiratory masks are known that have flexible seals and cover the nose, mouth, or both of a human user and are designed to create a continuous seal against the user's face. Because of the sealing effect that is created, gases can be provided at a positive pressure within the mask for consumption by the user. The uses for such masks range from high altitude breathing (i.e., aviation applications) to mining and fire fighting applications, to various medical diagnostic and therapeutic applications, including the treatment of obstructive sleep apnea with positive airway pressure devices.
One requisite of such respiratory masks has been that they provide an effective seal against the user's face to prevent the gas being supplied from leaking at the mask-to-face interface. Commonly, in prior mask configurations, a good mask-to-face seal has been attained in many instances only with considerable discomfort for the user. This problem is most crucial in those applications, especially medical applications, that require the user to wear such a mask continuously for an extended periods of time, such as hours or perhaps even days. In such situations, the user may not tolerate wearing the mask for long durations, and, as a result, optimum therapeutic or diagnostic objectives will not be achieved, or will be achieved with great difficulty and considerable user discomfort.
At least two types of respiratory face masks are known for the types of applications mentioned above. The most common type of mask incorporates a smooth sealing surface extending around the periphery of the mask and exhibiting a generally uniform (i.e., predetermined or fixed) seal surface contour that is intended to be effective to seal against the user's face when force is applied to the mask, with the smooth sealing surface in confronting engagement with the user's face. The sealing surface may consist of an air or fluid filled cushion, or it may simply be a molded or formed surface of a resilient seal element made of an elastomer, such as plastic or rubber.
Such masks have performed well when the fit is good between the contours of the seal surface and the corresponding contours of the user's face. However, if the seal fit is not good, there will be gaps in the seal-to-face interface, and excessive force will be required to compress the seal member to attain a satisfactory seal in those areas where gaps occur. Such excessive force is unacceptable, as it produces high pressure points elsewhere on the face of the user where the mask seal contour is forcibly deformed against the face to conform to the user's facial contours. This will produce considerable user discomfort anywhere the applied force exceeds the local perfusion pressure, which is the pressure that is sufficient to cut off surface blood flow. Ideally, contact forces should be limited between the mask and the user's face to avoid exceeding the local perfusion pressure even at points where the mask seal must deform considerably.
The problem of seal contact force exceeding desirable limits is even more pronounced when the positive pressure of the gas being supplied is relatively high or is cyclical to high levels. Because the mask seals by virtue of confronting contact between the mask seal and the user's face, the mask must be held against the face with a force sufficient to seal against leakage of the peak pressure of the supplied gas. Thus, for conventional masks, when the supply pressure is high, headstraps or other mask restraints must be tightly fastened. This produces high localized pressure on the face, not only in the zone of the mask seal but at various locations along the extent of the retention straps as well. This too will result in severe discomfort for the user after only a brief period of time. Even in the absence of excessive localized pressure points, the tight mask and headstraps often may become extremely uncomfortable and user discomfort may well cause discontinued cooperation with the regimen. Examples of respiratory masks possessing continuous cushion sealing characteristics of the type just described are provided in U.S. Pat. Nos. 2,254,854 and 2,939,458.
A second type of mask, which has been used with a measure of success, incorporates a flap seal of thin material positioned about the periphery of the mask as to provide a self-sealing action against the face of the user when positive pressure is applied within the mask. In such a mask, the flap seal typically defines a contoured sealing surface adapted for confronting and sealing engagement with the user's face. Under the influence of a flow of pressurized gas supplied to the interior of the mask, which impinges upon the surface opposite the contoured sealing surface, the sealing surface is urged into sealing contact with the user's face. With this type of sealing action, the forces that serve to hold the mask in confronting engagement on the face of the user are much lower than the strapping forces associated with the first type of mask described above. If the flap seal is capable of conforming to the contours of the user's face without forming leak paths, the mask can be used with retention straps that exert little or no net force to push the mask against the user's face. Thus, the overall sensation of constraint and confinement is dramatically reduced for the user. Such a mask, when properly adjusted, can be adapted to any positive internal mask pressure. The sealing flap will be self-sealing as long as there is no looseness in the strapping arrangement which would allow the mask to move away from the face further than the reach of the sealing flap when subjected to internal pressure.
There are two potential limitations of the above described mask type having a sealing flap characteristic. First, the sealing flap seals by laying flat against the user's face throughout its length. This action requires a close match between the contours of the face and the contours of the seal. If the match is not good, the seal will be ineffective. Second, the normal response of one applying the mask to a user's face is to push the mask harder against the user's face if the mask does not seal. With the typical flap seal-type mask, increasing contact pressure against the user's face will not help to form an effective seal if the flap seal does not initially fit well to the facial contours. It may, however, lead to patient discomfort and other problems as described above.
Some of the principal problems one encounters when trying to apply the self-sealing flap concept to the design of the respiratory mask are related to the location of relative low points and high points in the facial contours of the user relative to the shape or contour of the flap seal surface. If the seal surface does not contact the user's face at the relative lower points, then excessive gas leakage will occur, thus preventing sufficient internal gas pressure to develop to activate the sealing action of the seal flap at the low points. In the past, this problem has been solved for some applications by providing a variety of masks with differing seal flap shapes, sizes and contours. For example, for aircraft breathing masks, especially where expense is not a critical factor, wide variety of mask shapes and sizes may be provided to give the individual users an opportunity to find a mask offering good fit. In other breathing mask applications, such as a clinical use, where economic considerations may dictate a mask having the capability to accommodate a wide variety of facial sizes and

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Respiratory mask does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Respiratory mask, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Respiratory mask will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2982206

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.