Electric rotating machine

Electrical generator or motor structure – Dynamoelectric – Rotary

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C310S059000, C310S06000A, C310S061000, C310S270000

Reexamination Certificate

active

06346754

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to an electric rotating machine, in particular being suitable for applying to the electric rotating machine of direct gas cooling type having a large capacity.
In a conventional generator, in particular, in a turbine generator, a rotor is constructed by inserting a plurality of rotor coils into slots which are formed around a rotor core in the axial direction thereof. Those slots of the rotor are provided on an outer periphery surface of the rotor at a distance therebetween, at both sides of magnetic poles of the rotor core thereof, wherein the plurality of the rotor coils constructing the same magnetic pole are positioned concentrically around the magnetic pole. Those rotor coils are formed by accumulating the coil conductors in a radial direction in plural number of turns, and between the turns is provided an insulating layer. When turning on current to those rotor coils from an outside, necessary electromagnetic fields are generated round the magnetic poles, respectively. Those rotor coils are fixed strongly by means of wedges inside the slots so that they will not jump out into the outer radial direction thereof due to powerful or strong centrifugal force accompanies with rotation of the rotor, and at the edge portions of the rotor coils extending outside the rotor slots, they are held by means of cylindrical support rings, which are positioned to contact on the outer periphery of the end portions of the coils.
Turning on the current into the rotor coils, the Joule's heat is generated in the conductor of the coils. As the insulator layers of the rotor coils are used a material having high thermal resistance, such as mica, etc., however there is a limit in the heatproof temperature thereof, therefore there is a tendency that the higher the heatproof temperature the higher the cost thereof. Also, the thermal expansion of the coil conductor accompanying with the rise-up of temperature gives a large stress or strain on the rotor coils, in particular on the end portions thereof protruding outside the rotor slots, thereby sometimes causing a rotational vibration.
In the structure for cooling the end portions of the rotor coils, according to the conventional turbine generator, as is disclosed in Japanese Patent Laying-Open No. Hei 9-51644 (1997) for example, while putting between each of the rotor coils protruding outside the rotor slots a coil support member which extends in a longitudinal direction thereof, a coil support seat is put between the each rotor coil and the coil support member, so as to form a conducting groove communicating between the coil support member and the coil support seat in the longitudinal direction of the coils, thereby circulating a coolant fluid between the coil support member and the rotor coil and into the conducting groove so as to cool the coils (conventional art 1).
On a while, as the structure for cooling the end portions of the rotor coils in the turbine generator, there can be considered a one, as shown in
FIGS. 11 and 12
, wherein between the plurality of the end portions
12
B′ of the rotor coils are constructed the coil support member
13
′ and an inter support member space
17
′ being adjacent thereto, alternatively, in the longitudinal direction of the coils, and the inter support member spaces
17
′ are communicated to a coil inner-periphery side gap
15
′ on an inner periphery side thereof, to perform the cooling due to thermal siphon effect in the inter support member spaces
17
′ (conventional art 2).
In recent years, there is a tendency of bringing the generator small-sized or in a large capacity, and the density of heat generation in the rotor coils rises up, therefore there is a necessity of improvement in the cooling performance thereof. However, according to those of the conventional arts 1 and 2, the coil support seats and the coil support members contact with the rotor coils totally. Because of this, the power or capacity of cooling from the surface of the rotor coils, on which the coil support seats and the coil support members lie, is low. Namely, since insulating property is necessary for the coil support seats and the coil support members, ordinarily they must be made from a material having a low thermal conductivity. Therefore, the surface, on which the coil support seats and the coil support members contact with the end portions of the rotor coils, is nearly in a condition that it is thermally insulated, then the cooling area for cooling the end portions of the rotor coils is reduced down by that.
Also, in that of the conventional art 1, there are used the two (2) kinds of materials, such as the coil support member and the coil support seats lying between at both sides thereof, therefore workability is bad in particular in the insertion of those members.
On a while, in the construction of the conventional art 2, the size L
1
′ of the coil support member
13
′ in the longitudinal direction of the coil must be large in a certain degree from a view point of the workability in insertion and the strength of the coil support member
13
′. Because of this, the cooling area of the coils is reduced down by the coil support members
13
′ greatly.
OBJECT AND SUMMARY OF THE INVENTION
An object of the present invention is to provide an electric rotating machine, which can be constructed cheaply while improving the cooling capacity at the end portions of the rotor coils, as well as being small in the size and large in the capacity, with superior reliability thereof.
For accomplishing the object mentioned above, in accordance with the present invention, first of all, there is provided an electric rotating machine, having a stator, a rotor being positioned rotatable within the stator, and a communicating apparatus for communicating a coolant fluid within said electric rotating machine, wherein said rotor comprises: a rotor core in which a plurality of rotor slots are provided; a plurality of rotor coils, each of which is inserted into said rotor slot at a central portion thereof and protrudes end portions thereof outside said rotor slot; and a coil support member having insulating property, being positioned between the plurality of end portions of the rotor coils, wherein at an inner peripheral side of said plural end portions of the rotor coils is formed a coil inner peripheral side aperture which is communicated with said coolant, and in said coil support member is formed a recess portion, thereby to form a space facing a surface of said rotor coil, and said space being communicated with said coil inner peripheral side aperture at the inner peripheral side thereof.
Secondly, according to the present invention, there is provided an electric rotating machine, having a stator, a rotor being positioned rotatable within the stator, and a communicating apparatus for communicating a coolant fluid within said electric rotating machine, wherein said rotor comprises: a rotor core in which a plurality of rotor slots are provided; a plurality of rotor coils, each of which is inserted into said rotor slot at a central portion thereof and protrudes end portions thereof outside said rotor slot; and a plurality of coil support members having insulating property, being positioned between the plurality of end portions of the rotor coils at a distance therebetween, wherein at an inner peripheral side of said plural end portions of the rotor coils is formed a coil inner peripheral side aperture which is communicated with said coolant fluid, said coil support members and inter support member spaces adjacent thereto are positioned alternately, in a longitudinal direction of said coils, between the end portions of said plural rotor coils, while said inter support member spaces are communicated with said coil inner peripheral side aperture at inner peripheral side thereof, and in each of said coil support members is formed a recess portion to form an inner-support member space facing a surface of said rotor coil, thereby said inner-supp

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electric rotating machine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electric rotating machine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electric rotating machine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2982034

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.