Method for increasing emission through a potential barrier

Radiant energy – Radiant energy generation and sources

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S010000, C257S017000

Reexamination Certificate

active

06495843

ABSTRACT:

FIELD OF THE INVENTION
The present invention is concerned with methods for promoting the transfer of elementary particles across a potential energy barrier.
BACKGROUND
Vacuum Diodes and Thermionic Devices
In Edelson's disclosure, filed Mar. 7, 1995, titled “Electrostatic Heat Pump Device and Method”, Ser. No. 08/401,038, now abandoned, assigned to the same assignee as the present invention and incorporated herein by reference in its entirety, two porous electrodes were separated by a porous insulating material to form an electrostatic heat pump. In said device, evaporation and ionization of a working fluid in an electric field provided the heat pumping capacity. The use of electrons as the working fluid is disclosed in that application. In Edelson's subsequent disclosure, filed Jul. 5, 1995, titled “Method and Apparatus for Vacuum Diode Heat Pump”, Ser. No. 08/498,199, now U.S Pat No. 6,089,316 assigned to the same assignee as the present invention, an improved device and method for the use of electrons as the working fluid in a heat pumping device is disclosed. In this invention, a vacuum diode is constructed using a low work function cathode.
In Edelson's further subsequent disclosure, filed Dec. 15, 1995, titled “Method and Apparatus for Improved Vacuum Diode Heat Pump”, U.S. Pat. No. 5,722,242, assigned to the same assignee as the present invention and incorporated herein by reference in its entirety, the work function of the anode was specified as being lower than the work function of the cathode in order to optimize efficient operation.
In a yet further subsequent disclosure, filed Dec. 27, 1995, titled “Method and Apparatus for a Vacuum Diode Heat Pump With Thin Film Ablated Diamond Field Emission”, Ser. No. 08/580,282, now abandoned assigned to the same assignee as the present invention and incorporated herein by reference in its entirety, Cox and Edelson disclose an improvement to the Vacuum Diode Heat Pump, wherein a particular material and means of construction was disclosed to further improve upon previous methods and devices.
The Vacuum Diode at the heart of Edelson's Vacuum Diode Heat Pump may also be used as a thermionic generator: the differences between the two devices being in the operation of the diode, the types and quantities of external energy applied to it, and the provisions made for drawing off, in the instance of the thermionic converter, an electrical current, and in the instance of the Vacuum Diode Heat Pump, energy in the form of heat.
In Cox's disclosure, filed Mar. 6, 1996, titled “Method and Apparatus for a Vacuum Thermionic Converter with Thin Film Carbonaceous Field Emission”, Ser. No. 08/610,599, now abandoned, assigned to the same assignee as the present invention and incorporated herein by reference in its entirety, a Vacuum Diode is constructed in which the electrodes of the Vacuum Diode are coated with a thin film of diamond-like carbonaceous material. A Vacuum Thermionic Converter is optimized for the most efficient generation of electricity by utilizing a cathode and anode of very low work function. The relationship of the work functions of cathode and anode are shown to be optimized when the cathode work function is the minimum value required to maintain current density saturation at the desired temperature, while the anode's work function is as low as possible, and in any case lower than the cathode's work function. When this relationship is obtained, the efficiency of the original device is improved.
Many attempts have been made to find materials with low work function for use as cathodes for vacuum diodes and thermionic energy converters. Currently most research is in the field of cathodes for vacuum tubes. Research in thermionic converter technology is less intensive because of the difficulties of increasing thermionic emission of electrons from the flat surface, where field emission effect can not be applied. The practical importance of thermionic energy conversion is rapidly increasing due to increased needs for alternative energy sources. The most effective way of decreasing work function known today is the use of alkaline metal vapors, particularly cesium, and coating the emitter surface with oxide thin films. Use of Cs vapor is not without technical problems, and thin film coated cathodes generally show short lifetimes.
Thermotunnel Converter
The thermotunnel converter is a means of converting heat into electricity which uses no moving parts. It has characteristics in common with both thermionic and thermoelectric converters. Electron transport occurs via quantum mechanical tunneling between electrodes at different temperatures. This is a quantum mechanical concept whereby an electron is found on the opposite side of a potential energy barrier. This is because a wave determines the probability of where a particle will be, and when that probability wave encounters an energy barrier most of the wave will be reflected back, but a small portion of it will ‘leak’ into the barrier. If the barrier is small enough, the wave that leaked through will continue on the other side of it. Even though the particle does not have enough energy to get over the barrier, there is still a small probability that it can ‘tunnel’ through it.
The thermotunneling converter concept was disclosed in U.S. Pat. No. 3,169,200 to Huffman. In a later paper entitled “Preliminary Investigations of a Thermotunnel Converter”, [23rd Intersociety Energy Conversion Engineering Conference vol. 1, pp. 573-579 (1988)] Huffman and Haq disclose chemically spaced graphite layers in which cesium is intercalated in highly orientated pyrolitic graphite to form a multiplicity of thermotunneling converters in electrical and thermal series. In addition they teach that the concept of thermotunneling converter was never accomplished because of the impossibility of fabricating devices having electrode spacings of less than 10 &mgr;m. The current invention addresses this shortcoming by utilizing a piezo-electric, electrostrictive or magnetostrictive element to control the separation of the electrodes so that thermotunneling between them occurs.
A further shortcoming of the devices described by Huffman is thermal conduction between the layers of the converter, which greatly reduces the overall efficiency of these thermotunnelling converters.
Photoelectric Converter
In Edelson's application filed 12th May 1997, titled “Method and Apparatus for Photoelectric Generation of Electricity”, Ser. No. 08/854,302, now U.S. Pat. No. 5,973,259, assigned to the same assignee as the present invention and incorporated herein by reference, is described a Photoelectric Generator having close spaced electrodes separated by a vacuum. Photons impinging on the emitter cause electrons to be emitted as a consequence of the photoelectric effect. These electrons move to the collector as a result of excess energy from the photon: part of the photon energy is used escaping from the metal and the remainder is conserved as kinetic energy moving the electron. This means that the lower the work function of the emitter, the lower the energy required by the photons to cause electron emission. A greater proportion of photons will therefore cause photo-emission and the electron current will be higher. The collector work function governs how much of this energy is dissipated as heat: up to a point, the lower the collector work function, the more efficient the device. However there is a minimum value for the collector work function: thermionic emission from the collector will become a problem at elevated temperatures if the collector work function is too low.
Collected electrons return via an external circuit to the cathode, thereby powering a load. One or both of the electrodes are formed as a thin film on a transparent material, which permits light to enter the device. A solar concentrator is not required, and the device operates efficiently at ambient temperature.
Quantum Mechanics and de Broglie Wave
It is well known from Quantum Mechanics that elementary particles

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for increasing emission through a potential barrier does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for increasing emission through a potential barrier, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for increasing emission through a potential barrier will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2980735

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.