Methods and compositions for producing artificial fascia

Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of... – Solid support and method of culturing cells on said solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S398000, C435S401000, C435S402000, C424S093700, C128S885000, C128S898000, C623S011110

Reexamination Certificate

active

06482645

ABSTRACT:

BACKGROUND OF THE INVENTION
The technical field of the invention is the treatment of urinary incontinence. It is known in the act of surgery that one can treat patients with stress urinary incontinence by constructing a sling to support the bladder. The slings are usually designed to prevent leakage by providing circumferential pressure at the level of the bladder neck. The construction of such slings typically involves rotating various muscles and their attendant fascias (Mohenfellnev (1986)
Sling Procedures in Surgery
, In Stanton SI, Tanaglo E (eds)
Surgery of Female Incontinence,
2nd edn, Berlin; Springer-Vevlag).
Many natural and synthetic materials have been used to construct these slings, such as the Martex sling (Morgan, et al. (1985)
Amer. J. Obst. Gynec.
151:224-226); the fascia lata sling (Beck, et al. (1988)
Obst. Gynec.
72:699-703); the vaginal wall sling (Juma, et al. (1992)
Urology,
39:424-428); the Aldridge sling (McIndoe et al. (1987)
Aust. N. Z. J. Obst. Gynaecol.
27: 238-239); and the Porcine corium sling (Josif (1987)
Arch. Gynecol.
240:131-136). Slings have also been produced from allogenic grafts, particularly if the patient has poor quality fascia.
There are however, a number of problems associated with using these procedures and materials. Problems associated with using natural material as slings include, shrinkage, necrosis, and gradual thinning of the fascia which ultimately affects the efficiency and long term durability of the sling (Blaivas (1991)
J. Urol.
145:1214-1218). Another major disadvantage with using natural material is that extensive surgery is required, which can cause morbidity, typically as a result of nerve damage or wound infection (McGuire, et al. (1978)
J. Urol.
119:82-84; Beck, et al. (1974)
Am. J. Obstet. Gynecol.
129:613-621.) In addition, natural slings obtained from human donors carry with them the added risk of causing an immune reaction in the recipient.
As an alternative, synthetic materials have been used in patients who had poor quality, or insufficient fascial tissue for reconstructive purposes. However, reports of graft rejection, sinus formation, urethral obstruction and urethral erosion have limited the widespread use of these materials (See e.g, Nichols (1973)
Obstet. Gynecol.
41:88-93; Morgan, et al. (1985)
Am. J. Obstet.
151:224-226; and Chin et al. (1995)
Br. J. Obstet. Gyneacol.,
102:143-147.)
Accordingly, there exists a need to produce artificial fascial slings to treat urinary incontinence without the need of extensive surgery. There is also a need to produce artificial fascial slings which do not result in the disadvantages associated with synthetic materials used as fascial slings to date.
SUMMARY OF THE INVENTION
The present invention provides methods for producing artificial fascial slings and their subsequent use in treating subjects with urinary incontinence. The invention is based, in part, on the discovery that mesenchymal cells that secrete elastin and collagen, two extracellular proteins responsible for elasticity and strength, respectively, can be used to engineer artificial fascia in vitro.
Accordingly, in one aspect, the invention features a method for producing an artificial fascial sling comprising:
creating a polylayer of collagen-secreting cells derived from a cultured cell population on a biocompatible substrate; and
creating a polylayer of elastin-secreting cells derived from a second cultured cell population on the polylayer of the collagen-secreting cells, such that the cells of the two different populations form a chimeric interface.
The invention can further include the step of creating a fibroblast polylayer derived from a cultured fibroblast cell population on the polylayer of elastin-secreting cells, such that the fibroblast polylayer forms a chimeric interface with the polylayer of elastin-secreting cells.
The substrate is preferably a strip having a length of about 10 cm to about 30 cm, and a width of about 0.5 cm to about 4.0 cm. The strip can further include attachment sites that provide attachment to a support surface.
The method further comprising selecting a biocompatable substrate from the group consisting of cellulose ether, cellulose, cellulosic ester, fluorinated polyethylene, phenolic, poly-4-methylpentene, polyacrylonitrile, polyamide, polyamideimide, polyacrylate, polybenzoxazole, polycarbonate, polycyanoarylether, polyester, polyestercarbonate, polyether, polyetheretherketone, polyetherimide, polyetherketone, polyethersulfone, polyethylene, polyfluoroolefin, polymide, polyolefin, polyoxadiazole, polyphenylene oxide, polyphenylene, sulfide, polypropylene, polystyrene, polysulfide, polysulfone, polytetrafluoroethylene, polythioether, polytriazole, polyurethane, polyvinylidene fluoride, regenerated cellulose, urea-formaldehyde, or copolymers or physical blends thereof. In one preferred embodiment, the biocompatable substrate is polyglycolic acid.
In one embodiment, the collagen-secreting cells are selected from the group consisting of fibroblasts, chondroblasts, osteoblasts, and odontoblasts. In another embodiment, the elastin-secreting cells are selected from the group consisting of smooth muscle cells, chondrocytes, and fibroblasts.
In another aspect, the invention features a method for producing an artificial fascial sling comprising:
creating a polylayer of a collagen-secreting cells derived from a cultured cell population on a first surface of a biocompatible substrate; and
creating a polylayer of elastin-secreting cells derived from a second cultured cell population on a second surface of the biocompatible substrate, wherein the second surface is opposite the first surface.
The invention can further include the step of creating a fibroblast polylayer derived from a cultured fibroblast cell population, such that the fibroblast polylayer forms a chimeric interface with the at least one polylayer selected from the group consisting of a collagen polylayer or an elastin polylayer.
In yet another aspect, the invention features a method for treating a subject with urinary incontinence with an artificial fascial sling comprising:
positioning the artificial fascial sling around a urinary structure, the artificial sling comprising a polylayer of collagen-secreting cells derived from a cultured cell population deposited on a biocompatible substrate, and a polylayer of elastin-secreting cells derived from a second cultured cell population deposited on the polylayer of collagen-secreting cell population, such that the cells of the two different populations form a chimeric interface;
moving the urinary structure to a position that ameliorates urinary incontinence; and
securing the artificial fascial sling in a position that supports the urinary structure, to thereby treat a subject with urinary incontinence.
Optionally, a fibroblast polylayer, derived from a cultured fibroblast cell population, can be deposited on the polylayer of elastin-secreting cells, such that the fibroblast polylayer forms a chimeric interface with the polylayer of elastin-secreting cells. In one embodiment, the method further comprising altering the tension of the artificial fascial sling to change the position of the urinary structure. In another embodiment, the step of positioning the artificial fascial sling around a urinary structure further comprises positioning the artificial fascial sling around a bladder. In another embodiment, the step of positioning an artificial fascial sling around a urinary structure comprises positioning the artificial fascial sling around a urethra. In yet another embodiment, the step positioning an artificial fascial sling around a urinary structure comprises positioning the artificial fascial sling around a ureter.
In one embodiment, the step of securing the artificial fascial sling to a support structure comprises securing the artificial fascial sling with a securing agent. The securing agent can be selected from the group consisting of felt matrix, mesh patch and/or sutures.
In another embodiment, the step of securing the artificial fascial sling

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and compositions for producing artificial fascia does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and compositions for producing artificial fascia, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and compositions for producing artificial fascia will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2978283

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.