Process to produce polymers

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S115000, C526S156000, C526S106000, C526S107000, C526S137000, C526S352000, C502S113000

Reexamination Certificate

active

06495638

ABSTRACT:

FIELD OF THE INVENTION
This invention is related to the field of processes that produce polymers, where said polymers comprise polymerized ethylene. The phrase “ethylene polymers” as used in this application includes homopolymers of ethylene, and copolymers of ethylene with another monomer.
BACKGROUND OF THE INVENTION
There are many production processes that produce ethylene polymers. Ethylene polymers are utilized in many products, such as, for example, films, coatings, fibers, and pipe. Producers of such ethylene polymers are continuously conducting research to find improved ethylene polymers.
This invention provides ethylene polymers with improved properties.
SUMMARY OF THE INVENTION
It is an object of this invention to provide a process to produce a catalyst system.
Magnesium dihalides, particularly magnesium dichloride is preferred for the metal halide component because it is readily available and relatively inexpensive.
The transition metal is generally selected from titanium, zirconium and vanadium. Titanium tetrahydrocarbyloxides are the preferred titanium compounds for combining with the metal halide compound. Suitable titanium tetrahydrocarbyloxide compounds include those expressed by the general formula Ti(OR)
4
wherein each R is individually selected from alkyl, cycloalkyl, aryl, alkaryl, and aralkyl hydrocarbon radicals containing from about 1 to about 20 carbon atoms per radical and each R can be the same for different. Titanium tetrahydrocarbyloxides in which the hydrocarbyl group contains from about 1 to about 10 carbon atoms per radical are most often employed because they are more readily available. Suitable titanium tetrahydrocarbyloxides include, for example, titanium tetramethoxide, titanium dimethoxydiethoxide, titanium tetraethoxide, titanium tetra-n-butoxide, titanium tetrahexyloxide, titanium tetradecyloxide, titanium tetraeicosyloxide, titanium tetracyclohexyloxide, titanium tetrabenzyloxide, titanium tetra-p-tolyloxide and titanium tetraphenoxide. Of the titanium tetrahydrocarbyloxides, titanium tetraalkoxides are generally preferred and titanium tetraethoxide is particularly preferred.
The molar ratio of the transition metal compound to the metal halide compound can be selected over a relatively broad range. Generally the molar ratio is within the range of about 10:1 to about 1:10, preferably between about 3:1 and 0.5:2, however, the most common molar ratios are with the range of about 2:1 to about 1:2. When titanium tetrahydrocarbyloxide and magnesium dichloride are employed, a molar ratio of titanium to magnesium of about 2:1 is presently recommended as most all of the magnesium compound apparently goes into solution easily.
The metal halide compound and the transition metal compound employed are normally mixed together by heating, e.g. refluxing, these two components together in a suitable dry (essential absence of water) solvent or diluent, which is essentially inert to these components and the product produced. By the term “inert” is meant that the solvent does not chemically react with the dissolved components such as to interfere with the formation of the product or the stability of the product once it is formed. Such solvents or diluents include, for example, n-pentane, n-hexane, n-heptane, methylcyclohexane, toluene, xylenes and the like. It is emphasized that aromatic solvents are preferred, such as for example xylene because of the solubility of the metal halide compound and the transition metal compound is higher in aromatic solvents as compared to aliphatic solvents.
The first component produced from contact of the metal halide and transition metal compound is treated with an organometallic precipitation agent. Generally this is an organoaluminum halide compound which includes for example, dihydrocarbylaluminum monohalides of the formula R′
2
AlX, monohydrocarbylaluminum dihalides of the formula R′AlX
2
and hydrocarbylaluminum sesquihalides of the formula R′
3
Al
2
X
3
wherein each R′ in the above formulas is individually selected from linear and branched chain hydrocarbyl radicals containing from 1 to about 20 carbon atoms per radical and can be the same for different and each X is a halogen atom and can be the same or different. Some suitable organoaluminum halide compounds include, for example, methylaluminum dibromide, ethylaluminum dichloride, ethylaluminum diiodide, isobutylaluminum dichloride, dodecylaluminum dibromide, dimethylaluminum bromide, diethylaluminum chloride, diisopropylaluminum chloride, methyl-n-propylaluminum bromide, di-n-octylaluminum bromide, diphenylaluminum chloride, dicyclohexylaluminum bromide, dieicosylaluminum chloride, methylaluminum sesquibromide, ethylaluminum sesquichloride, ethylaluminum sesquiiodide, and the like. Ethylaluminum sesquichloride, ethylaluminum dichloride, and diethylaluminum chloride are preferred.
The above-described mixing of the catalyst component solution and the precipitating agent can be carried out under an olefin atmosphere. The olefin atmosphere employed can be an aliphatic mono-1-olefin having from 2 to about 18 carbon atoms per molecule. Thus, the olefin can include such as, for example, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene and 1-decene and mixtures of one or more thereof.
The solid catalyst component is subjected to a halide ion exchanging source either before or after the prepolymerization step. The halide ion exchanging source can be a halide of a transition metal. Some examples of suitable halide ion exchanging sources that can be employed are titanium tetrahalides, such as titanium tetrachloride.
It is another object of this invention to provide said catalyst system.
It is another object of this invention to provide a process to use said catalyst system to polymerize ethylene, or to copolymerize ethylene with at least one other monomer, to produce ethylene polymers.
It is another object of this invention to provide said ethylene polymers.
It is yet another object of this invention to provide a process to use said ethylene polymers to produce a manufacture.
It is still another object of this invention to provide a manufacture comprising said ethylene polymers.
In accordance with this invention a process is provided. This process comprises blending a first component and a second component to produce a catalyst system wherein:
(1) said first component of said catalyst system comprises chromium on a support, and wherein the amount of said chromium on said support is from about 0.05 to 5 weight percent based on the weight of said support, and wherein said support comprises fluorided alumina, and wherein said support has a surface area from about 200 to about 550 square meters per gram, and wherein said support has a pore volume from about 0.7 to about 2.5 cubic centimeters per gram, and wherein said first component has been activated at a temperature in the range of about 500° C. to about 900° C.; and
(2) said second component is a transition metal halide catalyst.
In another embodiment of this invention, a composition comprising said catalyst system is provided.
In another embodiment of this invention, a process is provided comprising: polymerizing ethylene, or copolymerizing ethylene with at least one other monomer, to produce ethylene polymers, wherein said polymerizing is conducted in a polymerization zone, and wherein said polymerizing is conducted using said catalyst system, and wherein said polymerizing is conducted in the presence of a first cocatalyst and a second cocatalyst, and wherein said first cocatalyst comprises trialkyl boron, and wherein said second cocatalyst comprises trialkyl aluminum.
In yet another embodiment of this invention, said ethylene polymers are provided.
In yet another embodiment of this invention, a process for using said ethylene polymers to produce a manufacture is provided.
In still another embodiment of this invention, a manufacture is provided comprising said ethylene polymers.
These and other objects of this invention will become more evident from the following des

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process to produce polymers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process to produce polymers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process to produce polymers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2978142

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.