Method and system for purging air from a print mechanism

Incremental printing of symbolic information – Ink jet – Fluid or fluid source handling means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06478417

ABSTRACT:

The present invention relates to printers. More particularly, this disclosure provides a system for purging air from a print mechanism.
BACKGROUND
Ink jet printers offer a mechanism for producing high print quality using inexpensive print materials. Typically, a print head includes a silicon substrate having hundreds of tiny jets per inch, each ejecting droplets of ink under the control of a microprocessor. This print head is usually mounted within a movable pen, which travels on a carriage directly over a paper conveyance path. In black-and-white printing, a single ink supply and print head is used, whereas two to four ink supplies and associated pens are normally used in color printing. Conventionally, in home printers, the ink supply is contained directly in each pen, and the pen usually must be completely replaced when the ink is gone. In larger ink jet printers used in some businesses, the ink supply is usually removed from the pen (so-called off-axis printing) due to the large ink supply required.
In both home and commercial applications, the cost of printing can be significantly affected by the need to occasionally replace the ink cartridge and its attached print head. This cost is somewhat lessened with off-axis printing since a relatively larger ink supply may be used (requiring less frequent ink replenishment) and may be more easily replaced using a removable, remote reservoir. Also, with the reservoir detached from the print head, the print head does not need to be replaced each time the ink reservoir is replaced.
One logistical problem in off-axis printing, however, is that it becomes more difficult to regulate the pressure of the ink supplied to the print head, sometimes called the pen “back pressure.” Importantly, the ink near the print head is usually held slightly less than atmospheric pressure, to avoid any tendency of the ink to drool from ink jet spray nozzles. At the same time, a minimum ink pressure usually must be maintained in order to reliably print.
Air trapped inside the local ink compartment of a pen can present a significant problem in controlling back pressure. Air can become trapped due to a variety of causes: For example, air dissolved in ink can be reduced over time or through temperature changes; air can be introduced by shipping or priming procedures, or when an ink supply is replaced; air can enter the ink supply through the print head, or via diffusion through tubing or other pen components. Since air is much more compressible than ink and expands with temperature or altitude, a small change in the quantity of air present in an ink supply can dramatically affect print quality. Air bubbles can also potentially clog the tiny jets of a print head, thereby directly affecting print quality and print head life.
Some methods have been proposed for cleaning print heads or for purging air bubbles from print heads. These methods, while generally successful for their intended purposes, generally do not provide an effective mechanism for removing large quantities of air trapped inside an ink supply. Similarly, while some air could be deliberately used as a compliant element inside ink pens, the proposed methods of purging air, however, are also generally not sufficiently precise to control air quantities for this purpose.
A need exists for a system that can purge trapped air in a print mechanism. Further still, a need exists for a system which can purge air directly from a local ink reservoir, such that pen back pressure can be more precisely controlled. Ideally, such a system should permit precise control over air within a print mechanism, such that some air can be left in the print mechanism if desired for some pen designs. The present invention solves these needs and provides further, related advantages.
SUMMARY
The present invention solves the aforementioned needs by providing a system for purging air from an print mechanism. By using the pressure regulation system and a blow-off vent to purge unwanted air, the present invention facilitates relatively precise control of back pressure, even permitting optimization of back pressure on an individual-print mechanism basis. As should be apparent, the present invention thereby potentially enables each print mechanism to be operated at roughly optimal back pressure, with ideally optimal print quality as a result.
One form of the invention provides a method of purging air from a print ink container. This method uses a sensor system to sense amount of air within the container, a blow-off vent and an electrically-controlled ink pressurizing mechanism used to pressurize the container with ink. The blow-off vent is positioned within the container such that air gravitates upward through the ink toward the normally-closed vent. The sensor system is used to indicate the amount of air within the container, and if too much air is present, the blow-off vent is opened and the container is simultaneously pressurized with ink, such that the unwanted air is expelled through the blow-off vent. In more detailed aspects of this form of the invention, the sensor can be a pressure sensor and the pressurizing mechanism can include both an electrically-controlled valve and a relatively pressurized remote ink supply.
Second and third forms of the invention provide an improvement in printing and an apparatus that roughly correspond to the first form of the invention.
The invention may be better understood by referring to the following detailed description, which should be read in conjunction with the accompanying drawings. The detailed description of a particular preferred embodiment, set out below to enable one to build and use one particular implementation of the invention, is not intended to limit the enumerated claims, but to serve as a particular example thereof.


REFERENCES:
patent: 4301459 (1981-11-01), Isayama et al.
patent: 4575738 (1986-03-01), Sheufelt et al.
patent: 4628333 (1986-12-01), Terasawa
patent: 4727378 (1988-02-01), Le et al.
patent: 4737801 (1988-04-01), Ichihashi et al.
patent: 5847734 (1998-12-01), Pawlowski et al.
patent: 5963237 (1999-10-01), Ikkatai et al.
patent: 6059405 (2000-05-01), Mochizuki et al.
patent: 6193363 (2001-02-01), Kelly
patent: 6318851 (2001-11-01), Hoen et al.
patent: 6325354 (2001-12-01), Hoen et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for purging air from a print mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for purging air from a print mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for purging air from a print mechanism will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2974643

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.