Device for the direct manual examination of a patient in a...

Surgery – Diagnostic testing – Measuring anatomical characteristic or force applied to or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06491649

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to medical devices that transmit tactile information from a remote location to an individual and, in particular, to devices that assist in the examination of a patient at a location remote from the location of a medical examiner.
BACKGROUND OF THE INVENTION
Computer technology and the enhanced ability for individuals to communicate via the Internet and other wide area networks have greatly altered our society. These communications platforms have allowed for the effective and efficient worldwide transfer of data as well as accessibility of this information to the general public. The way in which people communicate, exchange information, and transact business is being substantially affected by these developments. Traditional business practices are being expanded such that any business with a computer and Web site has potential access to any consumer in the world with a computer. Each individual business now has essentially a worldwide customer base. While many businesses are capitalizing on these current trends, the health care industry is one notable exception that is substantially lagging.
The health care environment is extremely complex. While third party and government payers and players in this arena have applied pressure to patients, hospitals, and physicians in order to “standardize” health care issues into predictable business models, this has been a difficult task to date. The uniqueness of each individual and the underlying basic characteristics of biological organisms, in themselves, preclude medicine from ever being an exact science which can be accurately predicted in all respects. This variability among patients, their diseases, their individual manifestation of similar diseases, and physician skill, training, and treatment practices all contribute to the difficulty in standardizing medical information collection, data storage, treatment algorithms, outcomes, and business modeling.
Medical practice is also a very unique type of personal service. A sick patient interacts with a unique skilled professional with the expectation of improving his or her health condition or alleviating suffering. The underlying physician-patient encounter is in actuality a complex data gathering interaction which is processed by the physician, who then develops an optimal diagnosis and treatment plan. The input data from the physician-patient encounter comes from a variety of sources which include the physical examination of the patient, laboratory tests, and radiological imaging studies, The most important source of input information is often the actual physical examination of the patient. The physical examination consists of the transfer of personal historical information from the patient to the physician, a review of the patient's current medications, and a direct visual and manual examination of the patient's body by the physician.
The manual examination of the patient's body includes applying gentle hand pressure along various parts of the abdomen, chest, and extremities in order to determine the body's response to direct manipulation. Inflammatory processes such as infections, abscesses, thromboses (clots), hollow or solid organ perforations, or fractures will yield a pain response with an increase in resistance in order to “guard” or protect against the noxious applied stimulus. Tumors or organ enlargement may be detected by resistance changes detected below an otherwise normal skin surface, analogous to perceiving a stone trapped in one's shoe. Fluid within the abdomen (ascites) can also be detected by applying hand pressure at one end of the abdomen and detecting the resultant fluid wave at an opposite location within the same cavity.
An expertly performed history and physical examination will yield a correct diagnosis with approximately 90% accuracy. In most circumstances, the laboratory and radiological imaging data provide confirmation of the diagnosis as well as adjunctive detail regarding the patient's condition. In the general sense, the physician functions as a computer by collecting all of the available input data from the various sources, processing that information with respect to the physician's personal knowledge or reference base, and establishing a list of likely diagnostic possibilities based on the input information. The physician then recommends a plan of treatment which is expected to improve the patient's health condition.
A portion of the data required to make an accurate medical diagnosis can be exchanged between the patient, laboratory, radiology, and physician using a variety of communications methods without the need for direct face to face contact between the communicating entities. The current communications revolution has allowed for the exchange of historical information, laboratory data, telemetry, and radiological studies via telephone, pager, fax, e-mail, and video. These advances have benefited all types of businesses, and medicine is no exception. There is, however, one unique piece of the data gathering process specific to medicine—the direct manual examination of the patient's body by the physician—which currently is not amenable to remote data acquisition.
SUMMARY OF THE INVENTION
The present invention provides a system satisfying the needs identified above. The device includes a hand control unit, a remote examination module, and a computer system connecting the hand control unit to the remote examination module. The present invention relates generally to a system enabling a user to send tactile stimuli such as a pressure input to a remote body such that the stimuli is experienced by the remote body to produce a response, detect the tactile response of the remote body to generate feedback, and transmit that tactile feedback to the user. A preferred embodiment of the invention is directed to remote patient examinations, and includes a physician's hand control unit (HCU) that is used by a physician to generate tactile stimuli, and is coupled by a computer system to a patient examination module (PEM) that applies the tactile stimuli to a patient and detects and transmits feedback corresponding to the detected response back to the HCU.
The HCU has at least one and preferably a plurality of sensory modulation subunits, and is adapted to receive the physician's hand such that the physician has access to the sensory modulation subunits. The PEM is adapted to contact or receive a portion of a patient's anatomy, preferably by wrapping around a portion of the patient, and has at least one and preferably a plurality of sensory modulation subunits that are thereby placed adjacent to the patient. The sensory modulation subunits detect forces or pressures applied to the subunits to produce corresponding output signals, and exert forces and/or displacements in response to input signals. Preferably, detection and exertion of forces occur approximately simultaneously. The sensory modulation subunits in the HCU are coupled to the sensory modulation subunits on the PEM through the computer system. In one embodiment, the computer system includes a first computer attached to the HCU and a second computer attached to the PEM, wherein the first and second computers have compatible communication systems to enable communications therebetween over a network.
The sensory modulation subunits on the HCU are coupled to the sensory modulation subunits on the PEM through software that feeds back the pressures detected, which permits the physician to simulate actual physical contact with a remote patient.
In a first preferred embodiment of the device, the PEM utilizes sensory modulation subunits with mechanical piston-type variable pressure-producing devices, such as linear actuators, to exert pressure in response to input signals. In a second embodiment of the device, the PEM utilizes pneumatic or hydraulic systems and expandable cells to produce the exerted pressure in response to input signals.
In an aspect of the present invention, the HCU includes a tracking ball a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for the direct manual examination of a patient in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for the direct manual examination of a patient in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for the direct manual examination of a patient in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2970816

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.