Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...
Reexamination Certificate
2001-10-12
2002-10-29
Henderson, Christopher (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Polymers from only ethylenic monomers or processes of...
C526S088000, C430S106100
Reexamination Certificate
active
06472485
ABSTRACT:
REFERENCE TO COPENDING AND ISSUED PATENTS
Attention is directed to commonly owned and assigned U.S. Pat. No. 5,322,912, issued Jun. 21, 1994, entitled “POLYMERIZATION PROCESSES AND THEIR TONER COMPOSITIONS THEREFROM”, wherein there is disclosed free radical polymerization processes for the preparation of a thermoplastic resin or resins comprising: heating from about 100° C. to about 160° C. a mixture comprised of a free radical initiator, a stable free radical agent, and at least one polymerizable monomer compound to form the thermoplastic resin or resins with a high monomer to polymer conversion and a narrow polydispersity; U.S. Pat. No. 5,412,047, issued May 2, 1995, entitled “HOMOPOLYMERIZATION PROCESSES WITH OXONITROXIDES”, wherein there is illustrated stable free radical moderated polymerization processes which employ an oxo nitroxide compound which enable the controlled homopolymerization of acrylate and related monomer compounds; U.S. Pat. No. 5,401,804, issued Mar. 28, 1995, which is a divisional application of U.S. Pat. No. 5,322,912, entitled “POLYMERIZATION PROCESS AND TONER COMPOSITIONS THEREFROM”; U.S. Pat. No. 5,449,724, issued Sep. 12, 1995, entitled “STABLE FREE RADICAL POLYMERIZATION PROCESS AND THERMOPLASTIC MATERIALS PRODUCED THEREFROM”, which discloses high pressure stable free radical polymerization processes for preparing, for example, polyethylene rubbers; U.S. Pat. No. 5,312,704, issued May 17, 1994, entitled “MONOMODAL, MONODISPERSED TONER COMPOSITIONS AND IMAGING PROCESSES”, wherein there is illustrated a toner composition comprised of pigment particles, and a resin prepared by anionic means comprised of a monomodal polymer resin or monomodal polymer resin blends and wherein the monomodal resin or resin blends possess a narrow polydispersity; U.S. Pat. No. 5,498,679, (D/95112), issued Mar. 12, 1996, entitled “PROCESS FOR PRODUCING BRANCHED AND STAR THERMOPLASTIC RESIN POLYMERS”; U.S. Pat. No. 5,549,998, issued Jul. 27, 1996, a divisional application of U.S. Pat. Nos. 5,322,912 and 5,401,804, entitled “POLYMERIZATION PROCESSES AND TONER COMPOSITIONS THEREFROM”; U.S. Pat. No. 5,545,504, issued Jul. 13, 1996, entitled “INK JETTABLE TONER COMPOSITIONS AND PROCESSES FOR MAKING AND USING”; U.S. Pat. No. 5,530,079, issued Jun. 26, 1996, entitled “POLYMERIZATION PROCESSES”; U.S. Pat. No. 5,552,502, issued Sep. 3, 1996, entitled “POLYMERIZATION PROCESSES”; and U.S. Pat. No. 5,608,023, issued Mar. 4, 1997, entitled “RATE ENHANCED POLYMERIZATIONS”.
Attention is directed to commonly owned and assigned U.S. Pat. No. 5,852,140, issued Dec. 22, 1998, entitled “SEMISUSPENSION POLYMERIZATION PROCESSES”; U.S. Patent No. 5,322,912, issued Jun. 21, 1994, entitled “POLYMERIZATION PROCESSES AND TONER COMPOSITIONS THEREFROM”, U.S. Pat. No. 6,258,911, issued Jul. 10, 2001, entitled “BIFUNCTIONAL MACROMOLECULES AND TONER COMPOSITIONS THEREFROM”, U.S. Pat. No. 6,320,007, issued, Nov. 20, 2001, entitled “POLYMERIZATION PROCESSES”; U.S. Pat. No. 5,773,510, issued Jun. 30, 1998, entitled “PROCESSES FOR THE PREPARATION OF BRANCHED POLYMERS”; U.S. Pat. No. 5,739,229, issued Apr. 14, 1998, entitled “POLYMERIZATION PROCESSES”; and U.S. Pat. No. 5,723,511, issued Mar. 3, 1998, entitled “PROCESSES FOR PREPARING TELECHELIC, BRANCHED AND STAR THERMOPLASTIC RESIN POLYMER”.
The disclosures of each the above mentioned patents and copending applications are incorporated herein by reference in their entirety.
BACKGROUND OF THE INVENTION
The present invention is generally directed to a processes for the preparation of polymeric particulate materials with narrow molecular weight distribution properties and narrow particle size distribution properties. More specifically, the present invention relates to improved reliability in polymerization processes for obtaining stable latexes(latices), and improved control over the resulting latex particle size and particle size distribution.
The present invention relates to processes for the preparation of polymers, and more specifically to miniemulsion polymerization processes, and to polymeric resins formed thereby. In one embodiment, the present invention relates to a stable free radical moderated miniemulsion polymerization process for producing a thermoplastic polymer resin or resins, that have narrow polydispersities, that is, narrow molecular weight distributions as defined by the ratio Mw:Mn, where Mw is weight average molecular weight of the polymer and Mn is number average molecular weight of the polymer, with an easily controllable modality, from at least one monomer compound comprising heating for an effective period of time a miniemulsified mixture of water, a free radical initiator, a stable free radical agent, an emulsifier, an optional co-surfactant and at least one substantially water insoluble polymerizable monomer compound under conditions such that all polymer chains are initiated at about the same time; cooling the mixture to effectively terminate the polymerization; optionally isolating the thermoplastic resin product; and optionally washing and drying the polymer resin products. Related miniemulsion polymerization processes for preparing, for example, thermoplastic resin are accomplished, in other embodiments, comprising: forming a miniemulsion comprised of a mixture of an oligomeric compound of the formula R-SFR, wherein R is an oligomeric compound comprised of from about 1 to about 30 monomer units and -SFR is a covalently bound stable free radical end group, at least one free radical polymerizable monomer compound, and a surfactant; and heating the miniemulsion from, for example, about 70 to about 200° C. for from, for example, about 1 to about 40 hours, preferably in a sealed vessel, wherein there results a latex thermoplastic resin or a latex of thermoplastic resins with a high monomer to polymer conversion of about 85 to 100 percent and a narrow polydispersity of from about 1.1 to about 2.0.
In another embodiment polymeric chain growth proceeds by a pseudoliving mechanism and can provide resins of variable molecular weights from very low to very high, for example, less than about 10,000 up to about 200,000 while maintaining narrow molecular weight distributions or polydispersities. In another embodiment block and multiblock copolymers can be synthesized by the aforementioned stable free radical moderated emulsion polymerization processes wherein each block formed is well defined in length by the added and reacted monomer and wherein each additional block that is formed also possesses a narrow molecular weight distribution.
Emulsion polymerization processes are known in the art, as illustrated hereinafter. Conventional emulsion polymerization processes proceed by a free radical mechanism providing resins of broad polydispersities and generally high molecular weights. The present invention relates to a miniemulsion polymerization process that proceeds via a pseudoliving free radical mechanism and provides resins of high, intermediate, or low molecular weights and with narrow polydispersities. The present invention provides product resins with a latent thermally reactive functional group on at least one end which can be used for further reaction to prepare other resins with complex architectures. The present invention, in embodiments, provides for control of the miniemulsion droplet size and the resultant resin bead or particle size, for example, as disclosed in the aforementioned copending application (D/92581). The aforementioned commonly owned U.S. Ser. No. 08/214,518 (D/92579 I ), discloses an emulsion polymerization process for the preparation of a thermoplastic resin or resins comprising heating from about 70 to about 160° C. a mixture comprised of water or aqueous mixtures of polar protic solvents, a water soluble or water insoluble free radical initiator, a stable free radical agent, and at least one polymerizable monomer compound which is substantially insoluble in water to form a latex thermoplastic resin or a latex of thermoplastic resins with a high monomer to polymer conversion and a narrow polydispersity.
Emulsion po
Georges Michael K.
MacLeod Paula J.
Odell Peter G.
Torres Francisco E.
Henderson Christopher
Thompson Robert
Xerox Corporation
LandOfFree
Polymerization process for the preparation of a resin does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Polymerization process for the preparation of a resin, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymerization process for the preparation of a resin will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2965551