Apparatus and method for the monopulse linking of frequency...

Communications: directive radio wave systems and devices (e.g. – Radar ew

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S147000, C342S156000

Reexamination Certificate

active

06411249

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to intercept receivers, and more particularly, to frequency agile emitters used in radar systems.
BACKGROUND OF THE INVENTION
Electronic Surveillance Measures (ESM) intercept receivers are used to collect radar data, and in particular to perform a pulse parameter measurement function. Pulse parameter measurements are used to type or “fingerprint” radar systems. The measurements taken by the ESM receiver include the traditional parameters such as pulse time of arrival (TOA), pulse width (PW), signal amplitude and carrier frequency, and so-called pulse internals such as modulation. Modulation measurements involve, for frequency agile radars, finding the minimum and maximum frequencies, time between the minimum and maximum frequencies, and the number of frequency steps for both LFM (linear frequency modulation, or chirp) and FSK (frequency-shift-keyed) signals. All these, and other electronic intelligence (ELINT) measurements are most accurate when performed on many pulses and statistically combined. Therefore the controller for the ESM receiver operated in an ELINT mode may direct a continuous tune to collect data for a single radar over several minutes.
The controller directs the receiver to tune to a certain center frequency. This is called a “dwell”. During a dwell, all pulses with RF carrier frequencies falling in the receiver bandwidth centered at the tune frequency are collected, sorted and processed. When fingerprinting, the sorting must occur in microseconds to assure enough pulses are stored to allow processing of sufficient contiguous pulses from the same radar. Such screening can rely on only one or two parameters. For fixed frequency radars the sorting parameter is typically RF carrier frequency. But frequency as a sorting parameter is not useful for frequency agile radars.
Radars use frequency agility either as an electronic counter countermeasure (ECCM), or to enhance performance. As an example of performance use, many sea borne radars have a frequency change every 10 ms to 100 ms to electronically steer the antenna beam. An example of ECCM use is frequency hopping within a bandwidth, possibly extending over 1 GHz, to reduce the vulnerability of surface-to-air missile systems to jamming.
As these two examples indicate, the change in transmitted frequency can be on a pulse-by-pulse or pulse-batch to pulse-batch basis, with the RF carrier frequency of the pulse perturbed in either a random or preprogrammed fashion. But even if deterministic at the transmitter, the frequency change schedule is typically such that the frequency of the next pulse or pulse group cannot be reliably predicted from the frequency of the current pulse by ESM processing.
Therefore in current systems the ESM receiver control must direct a wideband tune to capture pulses contiguous in time from frequency agile radar. But then the number of pulses for a particular agile radar that can be sampled and stored is limited since so many pulses from other radars in the environment will be collected. In fact, with a wideband tune the number of pulses stored from a single agile emitter is generally too small to do precision parameter extraction.
The linking of frequency agile pluses is called dehopping. The traditional way to use interferometer measured phase for dehopping is with a multichannel system generating the emitter angle-of-arrival or aoa from a single pulse. But implementing this is cumbersome since typically at least five channels are needed to generate sufficiently accurate aoa for sorting; i.e. five separate receivers are required to measure monopulse phase across four different interferometer baselines. Since, in an effort to limit both weight and cost, many recent ESM systems now incorporate only two channel receivers, such as Litton Industries Advanced Systems Division's LR-100 ESM Receiver, this conventional interferometer monopulse approach to dehopping is typically not available, and an alternative must be found.
A commonly tried alternative to using multichannel generated aoa for monopulse sorting is the use of pulse repetition interval (PRI) tracking and prediction. But radars use a variety of ECCM techniques, especially against jammers, that have the secondary consequence of rendering PRI tracking useless. For example, some radar time jitter their pulses. And some radar, in particular, many airborne radars, may operate in an agile-agile mode. That is, the radar can vary both the carrier frequency and the pulse repetition frequency. Therefore, sorting by PRI, i.e. predicting a time window for the next pulse based on a stable pulse-time interval model (using, for example, some variant of the approach described by Udd et al in U.S. Pat. No. 5,091,917 “Method and Apparatus for Pulse Sorting”), is, for a large and important class of emitters, not viable either. Hence, with neither frequency or pulse repetition interval prediction available, real-time agile-agile radar pulse sorting has not been possible in two-channel ESM systems.
Receivers like the LR-100 are particularly well adapted to use with an LBI, since LBI installations only require two antennas, and hence two receiver channels. The measured phase is highly ambiguous since the LBI baseline can be hundreds or even thousands of RF carrier wavelengths long, i.e., integer n
104
,
FIG. 1
, is unknown and possibly very large. This integer n
104
is unknown because the receiver can only measure phase within a cycle (equivalently 2&pgr; radians or 360°), but many cycles n
m
of phase are typically associated with the signal spatial angle-of-arrival
136
. The number of cycles is a function of the antenna separation, or baseline length d
137
, and is proportional to the number of wavelengths at the signal frequency
102
in d. In contrast to the single LBI baseline hundreds of wavelengths long, a conventional short-baseline-interferometer, or SBI, has several baselines, each with antennas spaced at most tens of wavelengths apart. The SBI uses comparisons between phase measurements made across this multiple set of short baselines during a single dwell to resolve the phase cycle ambiguities. But the long LBI baseline cannot be conveniently phase-calibrated like the SBI; also the antennas forming the LBI are so widely separated that they usually cannot be phase-error-nulled, or clocked and boresighted. Not calibrating the antenna-to-receiver cables or clocking and boresighting the antennas introduces a potentially large bias error into the phase measurements. Thus LBI based applications must use phase measurement differences rather than single phase measurements like the SBI, so that these bias errors cancel in the differenced measurements. In previous applications, e.g. Kaplan U.S. Pat. No. 4,734,702 and the applicant's U.S. Pat. No. 5,343,212 discussed below, the differencing occurred across receiver dwells.
The use of this dwell-difference approach in past LBI applications has generally involved passive emitter location. When the LBI is used for passive location, if there is no significant aircraft attitude change between dwells all bias errors are essentially dwell-to-dwell constant and hence cancel almost totally for fixed-frequency emitters. When the LBI phase difference measurements have been used to locate emitters in range, as described in Kaplan, U.S. Pat. No. 4,734,702, and Rose et al in U.S. Pat. No. 5,343,212 the ambiguity resolution was accomplished as part of the location process (Rose) or by predicting the cycle integer using SBI outputs (Kaplan). This invention extends the use of LBI phase differences to monopulse sorting of both moving and fixed emitters. But, as noted, unlike previous applications of the LBI the invention does not involve locating the emitter in range. Since the invention does not involve emitter location in range, and explicitly avoids the need for an SBI, it requires a different approach from that of Kaplan or Rose to resolve the phase difference ambiguity.
Note that that this ambiguity resolution is required, i.e. the LBI amb

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for the monopulse linking of frequency... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for the monopulse linking of frequency..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for the monopulse linking of frequency... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2962296

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.