Auxiliary fuel tank system with on-board diagnostics

Fluid handling – Processes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C137S255000, C137S624110

Reexamination Certificate

active

06405744

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to computer controlled vehicle subsystems, and especially to auxiliary fuel tank control equipments which are adaptable to many classes of vehicles, and which include on-board diagnostic (OBD) capabilities. The system is designed to work with both new and used main fuel systems, and can provide OBD capability to either system.
Computer controlled vehicle subsystems have long been used on vehicles to control various vehicle subsystems such as engine, ignition, transmission, brake, and suspension systems. Due to the complexity and inter-relationship between some of these vehicle systems, buses, or other on-board computer communication systems, have been developed to enable data and control signals to be passed between particular vehicle computers. Because of the heavy reliance on such on-board computers, combined with the variety of system types employed by the various automobile manufacturers, vehicles sold in the United States now are required to provide a standardized diagnostic interface to facilitate compatibility with standardized diagnostic scan tools. In California, this restriction is referred to as the CARB OBD (California Air Resources Board On Board Diagnostics 11, or EPA OBDII (Environmental Protection Agency On Board Diagnostics II) requirements, and have been applied to new vehicles beginning with the 1996 model year and to all vehicles in the 1998 model year. This applies to vehicles under 14000 lbs. GVWR in California and under 8600 lbs. GVWR outside California.
2. Background Art
Fuel transfer systems are, in general, well known. Sasaki, et al, in U.S. Pat. No. 4,834,132 for a Fuel Transfer Apparatus, describes a fuel transfer system for transferring fuel from a first sump to a second sump formed in a fuel tank used in an automotive vehicle.
U.S. Pat. No. 4,951,699 to Lipman for a Fuel Transfer System with Aspirator, shows a device and system to transport fuel from the interior portion of a fuel tank to another tank by automatic siphon action. An aspirator that evacuates air and fuel vapor from the siphon by the flow effect of the return fuel through a venturi or reduced diameter portion of the return fuel line initiates the siphon.
It is generally well known to provide special apparatus for verifying the operation of a data processing system. Some systems include separate maintenance or auxiliary processing units for testing different subsystems during normal operation or during a test mode of operation. It is also well known to include an internal testing capability integrated within the processing units of a system for establishing a certain level of operability. An example is seen in U.S. Pat. No. 5,548,713, in which Petry et al describe an on-board diagnostic testing apparatus which can test a processing unit in a system, and which also is usable in a factory test environment.
Communications of diagnostic test results are also known. Berra et al, in U.S. Pat. No. 5,555,498 describes a circuit and method for interfacing vehicle controller and diagnostic test instruments. An adapter is provided which permits the use of present diagnostic tools with newer ISO9141 equipped engine and transmission controllers. The adapter facilitates bidirectional communication while conditioning the signals entering and exiting the adapter.
Machida et al, in U.S. Pat. No. 5,592,923, describe diagnosis apparatus for treating fuel vapor of an engine, in which the fuel vapor in a fuel tank is once adsorbed and trapped in a canister and is then supplied to the intake system of an engine, wherein various valves are so controlled that a predetermined pressure condition is established in a passage for supplying the fuel vapor, and said various valves are diagnosed to determine whether they are defective or not, based upon pressure measurements against a norm.
Fundamental difficulties in obtaining low cost, accurate, and repeatable fuel level measurement systems have been recognized. A float-level sensor, including an immersed resistive sender element, has become a common standard, but it is known to be subject to effects of contact corrosion associated with various additives in the fuel. Gonze, in U.S. Pat. No. 4,782,699, combats alcohol caused corrosion by applying a 1-millisecond current pulse to the detector once a minute. In U.S. Pat. No. 5,172,007, Lumetta describes the problems associated with these common senders when immersed in so-called “flexible fuels” being developed for reduced hydrocarbon emissions. His specific solutions have been shown to be effective with M-85 (85% methyl alcohol and 15% gasoline) fuel when switched between 100 Hz and 15 kHz, but nothing is taught regarding more common gasoline fuels incorporating modern additives.
SUMMARY OF THE INVENTION
This system is designed to provide one or more auxiliary fuel sources as original equipment with new vehicles, or as an aftermarket addition to an older vehicle. The auxiliary system controls and monitors each fuel system and their associated fuel display. Fuel levels in each tank are balanced, diagnostic data is obtained from the performance of each system, and corrective actions including operator warnings are given. Although the original equipments may have their own computer controlled diagnostic capabilities, the auxiliary computer runs standard tests on all fuel systems. Each system's fuel tank senders are pulse-preconditioned prior to reading in a similar manner, with a technique unique to this invention.
The auxiliary fuel system of this invention comprises an auxiliary fuel tank, having an auxiliary fuel pump, a sending unit, check valves, inlet and outlet fuel lines, a wiring harness, a computer module, an auxiliary emissions canister assembly, vehicle installation means, and a liquid crystal display (LCD) device. In a typical installation in a pickup truck, the main original equipment manufacturer (OEM) fuel tank is sized around 30 gallons. The Auxiliary Fuel Tank is typically a 30-gallon tank that is mounted at the head of the pickup box. The computer module is mounted under the dash near the steering column. The Auxiliary emissions canister assembly is mounted near the OEM emissions canister assembly. The pump/sender is mounted in the Auxiliary tank. The wire harness routes from the computer module to the Auxiliary pump/sender, to the Auxiliary pressure sensor, to the OEM pump/sender, to the OEM pressure sensor, to the OEM fresh air vent solenoid valve, to the Auxiliary tank solenoid valve, to the OEM tank solenoid valve, to 12-volt power, and to chassis and OEM computer ground. The system functions as a computer controlled balance line. The computer monitors the entire system approximately once every four seconds. During each loop the fuel levels of the OEM and the Auxiliary tanks are determined. The Liquid Crystal Display (LCD) will indicate the gallons in the OEM tank, the gallons in the Auxiliary tank, the total gallons in the system, and the status of the system. The computer will also adjust the OEM fuel gauge accordingly.
It will be noted that the capacity ratio of a typical single Auxiliary tank to a single OEM tank is 1:1. During the transfer process, when the OEM tank is two gallons less than the gallons in the Auxiliary tank, the Auxiliary fuel pump will turn on and transfer fuel to the OEM tank. The transfer ends when the OEM tank is equal to the gallons in the Auxiliary tank. When the Auxiliary pump is on, the LCD will display “PMP ON”.
The Auxiliary fuel system of this invention also includes an On-Board-Diagnostics (OBD) capability. This system detects multiple problems that occur upon installation and during normal use. When a problem occurs for a set period of time, say at least 30 seconds, the computer will detect the problem and display the Diagnostic Trouble Code (DTC) associated with that problem on the LCD. A red light-emitting diode, (LED) will also be blinked a specific number of times for operator warning. After the problem has been displayed, and if it is the first problem that has occu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Auxiliary fuel tank system with on-board diagnostics does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Auxiliary fuel tank system with on-board diagnostics, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Auxiliary fuel tank system with on-board diagnostics will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2961104

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.