GPS receiver utilizing a communication link

Communications: directive radio wave systems and devices (e.g. – Directive – Including a satellite

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S357490, C342S357490, C701S215000, C455S456500

Reexamination Certificate

active

06400314

ABSTRACT:

BACKGROUND OF THE INVENTION
This application is also related to and hereby claims the benefit of the filing date of a provisional patent application by the same inventor, Norman F. Krasner, which application is entitled Low Power, Sensitive Pseudorange Measurement Apparatus and Method for Global Positioning Satellites Systems, Ser. No. 60/005,318, filed Oct. 9, 1995.
1. Field of the Invention
The present invention relates to receivers capable of determining position information of satellites and, in particular, relates to such receivers which find application in global positioning satellite (GPS) systems.
2. Background Art
GPS receivers normally determine their position by computing relative times of arrival of signals transmitted simultaneously from a multiplicity of GPS (or NAVSTAR) satellites. These satellites transmit, as part of their message, both satellite positioning data as well as data on clock timing, so-called “ephemeris” data. The process of searching for and acquiring GPS signals, reading the ephemeris data for a multiplicity of satellites and computing the location of the receiver from this data is time consuming, often requiring several minutes. In many cases, this lengthy processing time is unacceptable and, furthermore, greatly limits battery life in micro-miniaturized portable applications.
Another limitation of current GPS receivers is that their operation is limited to situations in which multiple satellites are clearly in view, without obstructions, and where a good quality antenna is properly positioned to receive such signals. As such, they normally are unusable in portable, body mounted applications; in areas where there is significant foliage or building blockage; and in in-building applications.
There are two principal functions of GPS receiving systems: (1) computation of the pseudoranges to the various GPS satellites, and (2) computation of the position of the receiving platform using these pseudoranges and satellite timing and ephemeris data. The pseudoranges are simply the time delays measured between the received signal from each satellite and a local clock. The satellite ephemeris and timing data is extracted from the GPS signal once it is acquired and tracked. As stated above, collecting this information normally takes a relatively long time (30 seconds to several minutes) and must be accomplished with a good received signal level in order to achieve low error rates.
Virtually all known GPS receivers utilize correlation methods to compute pseudoranges. These correlation methods are performed in real time, often with hardware correlators. GPS signals contain high rate repetitive signals called pseudorandom (PN) sequences. The codes available for civilian applications are called C/A codes, and have a binary phase-reversal rate, or “chipping” rate, of 1.023 MHz and a repetition period of 1023 chips for a code period of 1 msec. The code sequences belong to a family known as Gold codes. Each GPS satellite broadcasts a signal with a unique Gold code.
For a signal received from a given GPS satellite, following a downconversion process to baseband, a correlation receiver multiplies the received signal by a stored replica of the appropriate Gold code contained within its local memory, and then integrates, or lowpass filters, the product in order to obtain an indication of the presence of the signal. This process is termed a “correlation” operation. By sequentially adjusting the relative timing of this stored replica relative to the received signal, and observing the correlation output, the receiver can determine the time delay between the received signal and a local clock. The initial determination of the presence of such an output is termed “acquisition.” Once acquisition occurs, the process enters the “tracking” phase in which the timing of the local reference is adjusted in small amounts in order to maintain a high correlation output. The correlation output during the tracking phase may be viewed as the GPS signal with the pseudorandom code removed, or, in common terminology, “despread.” This signal is narrow band, with bandwidth commensurate with a 50 bit per second binary phase shift keyed data signal which is superimposed on the GPS waveform.
The correlation acquisition process is very time consuming, especially if received signals are weak. To improve acquisition time, many GPS receivers utilize a multiplicity of correlators (up to 12 typically) which allows a parallel search for correlation peaks.
Another approach to improve acquisition time is described in U.S. Pat. No. 4,445,118. This approach uses the transmission of Doppler information from a control basestation to a remote GPS receiver unit in order to aid in GPS signal acquisition. While this approach does improve acquisition time, the Doppler information is accurate for only a short period of time as the GPS satellites orbit the earth at relatively high speeds. Thus, a further transmission of Doppler information will be necessary in order for a remote unit to use accurate Doppler information.
An approach for improving the accuracy of the position determination by a remote GPS receiver unit is also described in U.S. Pat. No. 4,445,118, referred to as the Taylor patent. In the Taylor patent, a stable frequency reference is transmitted to a remote GPS receiver unit from a basestation in order to eliminate a source of error due to a poor quality local oscillator at the remote GPS receiver unit. This method uses a special frequency shift keyed (FSK) signal that must be situated in frequency very close to the GPS signal frequency. As shown in
FIG. 4
of the Taylor patent, the special FSK signal is about 20 MHz below the 1575 MHz GPS signal. Moreover, the approach described in the Taylor patent uses a common mode rejection mechanism in which any error in the local oscillator (shown as L.O. 52) of the receiver will appear in both the GPS channel and the reference channel and hence be canceled out. There is no attempt to detect or measure this error. This approach is sometimes referred to as a homodyne operation. While this approach provides some advantages, it requires that the two channels be closely matched, including closely matched in frequency. Moreover, this approach requires that both frequencies remain fixed, so frequency hopping techniques are not compatible with this approach.
SUMMARY
In one aspect of the present invention, a mobile GPS receiver receives a precision carrier frequency signal from a source providing the precision carrier frequency signal. The receiver locks to this frequency signal and provides a reference signal which is used to calibrate (e.g., stabilize or correct) a local oscillator that is used to acquire GPS signals. An apparatus which practices this aspect includes, in one embodiment, a first antenna which receives GPS signals and a downconverter coupled to the first antenna. The downconverter is coupled to a local oscillator which provides a first reference signal to the downconverter. The apparatus also includes a second antenna for receiving a precision carrier frequency signal from a source providing the precision carrier frequency signal and an automatic frequency control (AFC) circuit coupled to the second antenna. The AFC circuit provides a second reference signal to the local oscillator to calibrate the first reference signal which is used to acquire GPS signals received through the first antenna. The frequency of the precision carrier frequency signal may vary from transmission to transmission.
One embodiment of the present invention provides a method for determining the position of a remote GPS receiver by transmitting GPS satellite information, including satellite almanac data, to the remote unit or mobile GPS unit from a basestation via a data communication link. The satellite almanac data is then used to determine Doppler data for satellites in view of the remote unit. The remote unit uses this Doppler data and received GPS signals from in view satellites to subsequently compute pseudoranges to the satellites. The computed pseudoranges are then tran

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

GPS receiver utilizing a communication link does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with GPS receiver utilizing a communication link, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and GPS receiver utilizing a communication link will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2961037

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.