Sheeting transport apparatus having anti-positional offset...

Sheet feeding or delivering – Feeding – By means to convey sheet

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S104000, C400S625000, C400S645000

Reexamination Certificate

active

06343787

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a sheeting transport apparatus with which a sheet of material to be scanned, namely, sheeting, is transported with two roller pairs in an auxiliary scanning direction for recording an image on the sheeting or reading the image on the sheeting as it is illuminated with light beams. More particularly, the invention relates to the technical field of sheeting transport apparatus in an optical beam scanner that scans sheeting with light beams deflected or aligned in a one-dimensional direction to record an image on the sheeting (in the case of an image recording apparatus) or read the image recorded on the sheeting (in the case of an image reading apparatus).
In current radiation image information reading apparatus, a stimulable phosphor sheet having radiation energy stored therein as image information is illuminated with exciting light such as laser light so that the stored radiation energy is emitted to produce photo-stimulated luminescence, which is detected with a photodetector such as a photomultiplier to read the radiation image information photoelectrically. For two-dimensional reading of the radiation image information stored in the stimulable phosphor sheet, the optical beam scanner in the radiation image information reading apparatus performs main scanning of the sheet with one-dimensionally deflected laser light as it is transported in an auxiliary scanning direction generally perpendicular to the main scanning direction. A mechanism commonly used in the optical beam scanner to transport the stimulable phosphor sheet or other types of sheeting in an auxiliary scanning direction is a sheeting transport apparatus that employs two roller pairs spaced apart by a distance shorter than the length of the sheeting in the auxiliary scanning direction (see, for example, Unexamined Published Japanese Patent Application (kokai) Nos. 135064/1987, 167150/1987 and 67859/1988).
In the sheeting transport apparatus, the sheeting such as a stimulable phosphor sheet often receives an impact when it goes into or emerges from a pair of rollers. To avoid this problem, one of the two rollers in pair, namely, a nip roller, is brought out of engagement with the other (fixed roller) when the sheeting goes into or emerges from the roller pair. By thusly avoiding the occurrence of impacts on the sheeting, the latter is prevented from vibrating or being offset in position and, as a result, the sheeting is transported in an auxiliary scanning direction smoothly and precisely enough to enable precise reading of the image information. According to commonly assigned Unexamined Published Japanese Patent Application (kokai) No. 281635/1993, there is disclosed an improved mechanism for transporting sheeting in an auxiliary scanning direction using two such roller pairs and it is a compact sheeting transport apparatus of simple construction that uses a single actuator to have the nip roller disengaged from the fixed roller either when the sheeting goes into the roller pair or when it emerges from the roller pair.
In the image recording art, there are used photoprinters with which the images recorded on photographic films such as negatives and reversals (which are hereinafter referred to simply as “films”) are printed on light-sensitive materials such as photographic paper and later developed to produce finished photographic prints. Such photoprinters have heretofore been of an analog type that performs areal exposure (direct exposure) of the film image by projecting it onto the light-sensitive material. The assignee has recently commercialized a digital photoprinter which operates in the following manner: the film image is read photoelectrically with an image sensor such as CCD in an image reading apparatus such as a scanner, converted to digital image data which is then subjected to specified image processing schemes in an image processing apparatus; in the optical beam scanner in an image recording apparatus (printing apparatus), a light-sensitive material is scan exposed with recording light beams modulated in accordance with the processed digital image data to record an image (latent image), subjected to development and other necessary treatments with a developing apparatus and output as a finished photographic print.
In the digital photoprinter, the film image is read photoelectrically, converted to digital image information (data) and thereafter subjected to digital image processing in which tonal correction and other schemes are performed to determine the exposing conditions. Therefore, by digital image processing, not only jobs of editing printed images such as assembling a plurality of images and splitting a single image into two or more images but also various image processing schemes such as color/density adjustments, edge enhancement, dodging, peripheral luminance correction, the correction of distortion and the correction of chromatic aberrations can be performed in any desired manner to output prints that meet specific needs of the user. In addition, the image data about the printed images can be supplied to a computer and other processing equipment or stored in recording media such as a floppy disk.
Another advantage of the digital photoprinter is that it is capable of outputting prints of better image quality than those produced by the conventional direct exposure technique in various aspects including resolution, the fidelity in color/density reproduction, and so forth.
Despite these desirable features, the digital photoprinter developed by the assignee has problems. In the image printing apparatus used as an image recorder, a web of light-sensitive material is unreeled and transported in an auxiliary scanning direction as it is repeatedly subjected to main scanning with one-dimensionally deflected light beams so that a number of images are recorded on the uninterrupted length of the light-sensitive material. The exposed light-sensitive material is also developed in a continuous form and finally cut to a specified, image-dependent length, thereby producing discrete finished prints. This approach is capable of volume processing in a very high efficiency. On the other hand, the system is so bulky that small-lot processing can only be accomplished with considerable difficulty. What is more, the system is too expensive and bulky to be suitable for use in small-lot processing.
Under the circumstances, there is a strong need for a printing apparatus that can be used with the digital photoprinter such that a web of light-sensitive material is cut to discrete sheets of a print-dependent length and thereafter scan exposed with light beams. The printing apparatus (which is hereunder referred to as a “sheet-fed image recording apparatus”) allows for realizing a smaller system and considerable reduction in the equipment and running costs.
One may contemplate operating the sheet-fed image recording apparatus with the sheeting transport apparatus described in Unexamined Published Japanese Patent Application (kokai) No. 281635/1993, supra, that employs two roller pairs and which is used as a mechanism for transporting sheets in an auxiliary scanning direction in an optical beam scanner in a radiation image information reading apparatus.
In the sheet-fed image recording apparatus, a web of light-sensitive material is unreeled and cut to sheets of a given length; therefore, the individual sheets of light-sensitive material are not completely flat but “curl” to some extent. Since the light-sensitive material in a cassette is commonly wound up in roll form with the emulsion-coated side facing outward, a convex curl remains with the emulsion-coated side facing outward after the light-sensitive material has been cut to sheets.
Suppose that such “curling” sheets of light-sensitive material are transported in an auxiliary scanning direction with the sheeting transport apparatus described in Unexamined Published Japanese Patent Application (kokai) No. 281635/1993, supra that employs two spaced roller pairs. If each sheet of light-sensitive material is exposed i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sheeting transport apparatus having anti-positional offset... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sheeting transport apparatus having anti-positional offset..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sheeting transport apparatus having anti-positional offset... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2961010

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.