Method for detecting live microbiological contaminants in a...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S091200, C435S091510, C536S024300, C536S024320

Reexamination Certificate

active

06472149

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a process for detecting live microbiological contaminants in a food product sample.
DESCRIPTION OF THE RELATED ART
Food products are particularly susceptible to contamination with microbiological products, in particular with bacteria, on account of the powerful effect which a contamination has on the health of the persons ingesting the food. In this sphere, live, and therefore active, microorganisms are particularly formidable since they are then able to propagate in the body and transmit severe diseases. There is therefore a definite need to develop a process which enables these live microorganisms to be detected in food products in a manner which is both precise and satisfactory.
A large number of methods exist for detecting bacteria, in particular, in samples. One which may be mentioned, by way of example, is that of culturing the sample in order to increase the number of bacterial cells present until colonies, which can be counted, are observed. Where appropriate, the culture can be followed by an additional step which enables the particular type of bacteria contained in the sample to be identified. These bacteriological methods require a great deal of time and skill on the part of the individuals who carry them out. Thus, it is generally necessary, for example, to incubate for from 24 to 48 hours before being certain of obtaining a positive or negative result.
Other methods have also been envisaged for eliminating the drawbacks of the conventional bacteriological method. Thus, microscopy is frequently used for detecting bacteria in clinical samples. Usually, it is necessary to stain the sample in order to increase the detection limits, a procedure which on the one hand represents a laborious method and, on the other hand, is unsuitable for food samples (1). Some immunological methods have also been successfully developed for detecting certain species which possess surface antigens which can be recognized by specific antibodies. However, such an approach cannot be used for qualitatively determining bacteria in a sample which may contain a large variety of bacterial species which do not possess a common surface antigen.
The European Patent Application EP-A-0 133671 describes a method for determining the presence of bacteria in samples, in particular in media, such as body fluids, which are suitable for diagnostic purposes, which employs nucleic acid hybridization techniques. According to this method, the sample to be tested is first of all subjected to denaturing conditions so as to render the nucleic acids of the bacteria, which are present in the sample, single-stranded. The resulting single-stranded nucleic acids are brought into contact with a polynucleotide probe which possesses a sequence which is homologous with at least one sequence which is common to all the bacterial species which are present in the sample. The probe and the denatured nucleic acids are brought into contact so as to effect a hybridization between the probe and the respective sequences of the bacteria. More particularly, the probe employed comprises at least a part of one of the strands of a gene which codes for the synthesis of a nucleic acid or a protein which is involved in the mechanism by which the proteins are synthesized. Those genes of this type which are cited are, in particular, genes which encode transfer RNAs, ribosomal RNAs, or initiation, elongation or translation termination factors. One of the features of this method is that it is not based on expression but rather on the presence of hybridizable nucleic acids, for example the RNA or the genomic DNA or the extra-chromosomal nucleic acids of the bacteria which are present. The result, which the Applicant views as being an advantage, of this is that the samples do not have that it is not based on expression but rather on the presence of hybridizable nucleic acids, for example the RNA or the genomic DNA or the extra-chromosomal nucleic acids of the bacteria which are present. The result, which the Applicant views as being an advantage, of this is that the samples do not have to be treated so as to guarantee the viability of the bacteria which are present.
Document WO 92/03455 describes compositions and processes for treating and diagnosing infections with Candida, in particular nucleotides which are able to hybridize specifically with a part of the Candida MRNA, in particular the mRNA encoding elongation factors 1 and 2 (TEF1 and TEF2). This document is only directed towards therapeutic or diagnostic applications, either for detecting the presence of Candida in a patient or for inhibiting the activity of this bacterium by blocking the expression of essential proteins.
The document Berg et al., “MOL CELL. PROBES, Vol. 10, February 1996, pp 7-14” describes a system for specifically detecting the DNA of microplasmas using the PCR technique. Although it is indicated, on page 12 of this document, that the target sequence for the PCR amplification is the tuf gene, which encodes the elongation factor Tu, this document is only directed towards detecting DNA, and not mRNA on the one hand, and, on the other hand, the method is only a method for detecting bacteria in order to establish a diagnosis in a patient. This document does not envisage any application in the sphere of the invention, in which the specific problem is that of detecting living bacteria.
Thus, there is no known method which makes it possible to detect live microbiological contaminants in a food product and which at the same time discriminates between the live microorganisms and the dead microorganisms and which, moreover, does not pose any problems relating to public health.
SUMMARY OF THE INVENTION
The inventors have now discovered that it was possible to detect live microbiological contaminants in a food product sample by detecting, in this sample, the resence of messenger RNA (mRNA) which codes for the synthesis of a protein which is involved in the mechanism by which the proteins of the said contaminants are synthesized.
Different families of microorganisms can be detected in accordance with the invention. Procaryotes, in particular bacteria, unicellular eucaryotes, in particular yeasts, and multicellular eucaryotes, in particular fungi, may be mentioned in a nonlimiting manner. Different species can be identified within these families. Thus, for example, Escherichia, Salmonella and Mycobacterium in the case of bacteria; Saccharomyces and Candida in the case of yeasts; Mucor, Neurospora and Trichoderma in the case of fungi.
The synthesis of proteins by microorganisms comprises steps of transcription and translation. Within the context of translation, nucleic acids and proteins exist which are involved in each of the three basic steps of protein synthesis, i.e. initiation, elongation and termination. invention in order to detect live microbiological contaminants belonging to different species.
DETAILED DESCRIPTION OF THE INVENTION
Thus, according to one preferred embodiment, the invention relates to a process for non-specifically detecting live contaminants belonging to different species of a family of microorganisms, according to which the MRNA detected is an mRNA which codes for the synthesis of a protein whose primary structure is at least partially conserved between different species.
On the contrary, if a greater specificity of detection between different microorganism species is required, it is possible, according to the invention, to detect different mRNAs which respectively code for the synthesis of a protein whose primary structure is not conserved between different species.
Of all the factors which are involved in protein synthesis, one example which is particularly preferred consists of the elongation factors. Those of these factors which may be mentioned are the EF-1, EF-2, EF-G and EF-TU factors, in the case of bacteria (2), or else the EF-1&agr; factor (3) in the case of yeasts and fungi. These factors play a fundamental role in protein synthesis in that they determine the length of time during which an am

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for detecting live microbiological contaminants in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for detecting live microbiological contaminants in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for detecting live microbiological contaminants in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2955984

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.