Pipe wrap for preventing microbiologically influenced...

Stock material or miscellaneous articles – Hollow or container type article – Polymer or resin containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S461000, C428S515000, C428S516000, C428S523000, C424S411000, C424S412000, C138S141000, C138S146000

Reexamination Certificate

active

06488998

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an improved anti-corrosive material. Particularly, the present invention relates to a protective material for preventing microbiologically influenced corrosion in buried conduits. More particularly, the present invention relates to a multi-layered material used to encase buried conduits to prevent corrosion.
BACKGROUND OF THE INVENTION
Buried conduits are ubiquitously used for carrying various materials, such as water, natural gas, oil, and sewage. A major problem with buried conduits comprised of metal or concrete with metal reinforcements is corrosion. The severity and rate of corrosion is dependent on the type of material comprising the conduit and the environment in which the conduit is buried. Insuring the longevity of buried conduits is an important part of the infrastructure in the United States and the world. Significant costs are involved in design, development, manufacture, and installation of water, gas, and sewage systems. Failure of these systems from conduit corrosion represents appreciable costs.
The control of corrosion of metals has been a quest of producers and consumers for the entire history of ferrous materials. Corrosion is typically understood to be the result of oxidation and/or galvanic processes. Historically, corrosion prevention has primarily addressed the reduction of oxygen component or control of galvanic action to prevent the occurrence of corrosion. Some typical corrosion prevention processes are painting or coating the metal to prevent oxygen from reaching the surface, volatile corrosive inhibitors that remove the available oxygen, and/or cathodic protection. Even after utilizing all the currently available mechanisms for the prevention of corrosion there are instances where unexplained corrosion occurs in buried metal pipes and conduits.
In the 1930's, the mechanisms of Microbiologically Influenced Corrosion (“MIC”) were proposed by Von Wolzen Kuhr to explain corrosion initiated or accelerated by microorganisms. Since that time, studies have shown the Von Wolzen Kuhr theory to be valid, and it has been established that a consortium of microorganisms contribute to many metal corrosion failures. These microorganisms, alone or more typically in combination, include as follows:
Sulphate-reducing bacteria including Desulfovibrio, Desulfobacter, and Desulformaculum. Sulphate-reducing bacteria are anaerobic and are the primary cause of Microbiologically Influenced Corrosion. Sulphate-reducing bacteria are associated with the reduction of sulphate under anaerobic conditions and an associated production of hydrogen sulfide, which creates an alkaline environment that can accelerate corrosion.
Iron-oxidizing bacteria including Gallionella, Sphaerotilus, Leptothrix, Clonothrix, and Crenothrix. Iron-oxiding bacteria are associated with the oxidization of various forms of iron and, in some cases, an associated production of ferric chloride and an acidic environment that can accelerate corrosion.
Sulfur-oxidizing bacteria including Thiobacillus, Thiodendron, Beggiatoa, and Sulfolobus. Sulfur-oxiding bacteria are aerobic bacteria that form sulphuric acid, which is corrosive to many metals, from the oxidation of sulphur or sulphur-bearing compounds.
Slime-forming bacteria including Pseudomonas, Escherichia, Flavobacterium, Aerobacter and Bacillus.
Susan Watkins Borenstein,
Microbiologically Influence Corrosion Handbook
ch. 2 (1994).
Hereto, no one has effectively addressed the elimination of the microbiologically influenced corrosion occurring in buried metal pipes and conduits. For example, ductile iron pipe (DIP) typically exhibits a low risk to severe corrosion compared to other metals; however, a rapid increase in the corrosion rate can be initiated by oxygenated water, tidal action, or specific soil types such as soils containing sulfides. Because of the high costs associated with removal and replacement of corroded conduits, the industry has expended substantial resources attempting to solve this problem.
Initially, conduits were covered with paint coatings, wraps, or other materials to separate the conduit surfaces from the environment. However, specialized coatings are either susceptible to deterioration by sulfate-reducing bacteria or are sophisticated to the point that they are no longer cost effective. Later, barrier films of polyethylene were used to protect DIP conduits. By insulating the exposed surfaces from soil, electrical currents, and oxygenated water, corrosion is usually prevented. However, due to improper installation, tears and punctures to the barrier film occurring during the installation and backfill process, free flow of water from tidal action, or soil or water becoming entrapped between the film and the conduit surface, actual corrosion still occurs in many cases. The industry has attempted to solve these problems by using more durable barrier films to encase the conduit surfaces, such as high density cross-laminated polyethylenes (HDCLPE). The superior impact strength, tear resistance, and tensile strength of HDCLPE has reduced some of the problems associated with the installation and backfill process; however, HDCLPE does not adequately address or control the problem of microbiologically influenced corrosion. Since there has not been an adequate alternative, present industry standards typically use either an 8 mil low density polyethylene (LDPE) film or a 4 mil HDCLPE film, a mil being equal to one thousandth of an inch (0.0254 millimeter), to wrap around the conduits for protection against corrosion.
Polyethylenes, as well as other plastic films, limit the free flow of water against the conduit surfaces, thereby reducing available oxygen. Any moisture that becomes trapped between the film and the conduit surface will eventually become deaerated. A problem arises where deaerated water levels are attained in the presence of the previously identified sulfate reducing bacteria. Many anaerobic bacteria, such as
Desulfovibrio desulfuricans,
thrive in certain fresh water, brackish water, sea water, sulfate soils, or warm soil conditions. These bacteria act as a catalyst to initiate or augment the rate of corrosion in an environment that is normally adverse to corrosion, and as previously noted are a primary cause of microbiologically influenced corrosion. Additionally, other types of bacteria are believed to play a part in corrosion propagation and it appears that bacteria are also responsible for degradation of the polyethylene film. A possible solution to this problem is to treat the materials used to encase the conduit with bactericides. However, most bactericides are topical and water soluble, thereby offering only initial protection that loses their effectiveness when used in buried systems exposed to wet conditions. Since conduits are buried for decades, this would not provide adequate long-term protection.
Another possible solution is to use certain volatile corrosion inhibitors (VCIs) which can be introduced either in contact or near the metal surface to eliminate or reduce the presence of corrosion. An example of a commonly used VCI is illustrated in U.S. Pat. No. 3,425,954. These VCIs can be used to prevent conditions from developing inside the film barrier which are favorable to corrosion. VCIs work at a micron level to passivate the surface of metal with a passive film, thus reducing the chemical reactivity of its surface. VCIs are normally used in kraft papers for short term protection of metal parts, as illustrated in U.S. Pat. No. 4,557,966; however, paper is not suitable to be buried. VCIs could be added to the polyethylene film, but the effectiveness will be shortened since the vapor tends to escape from the film, thus preventing extended protection. VCIs also lose their effectiveness when used in buried systems. An additional possible solution is the practice of isolating the system to prevent corrosion due to galvanic action; however this technique is ineffective against bacterial corrosion. However, currently available methods for controlling conduit

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pipe wrap for preventing microbiologically influenced... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pipe wrap for preventing microbiologically influenced..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pipe wrap for preventing microbiologically influenced... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2953415

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.