Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Cosmetic – antiperspirant – dentifrice
Reexamination Certificate
1997-12-30
2002-08-13
Dees, Jose′ G. (Department: 1616)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Cosmetic, antiperspirant, dentifrice
C424S078080, C424S078170, C424S078210, C424S078310, C424S070120, C424S070160
Reexamination Certificate
active
06432418
ABSTRACT:
The present invention relates to a cosmetic or dermatological composition for treating keratin substances, in particular human hair, this composition comprising at least one grafted silicone polymer and at least one copolymer having a linear polysiloxane/polyoxyalkylene block as repeating units.
Grafted silicone polymers are known in the prior art, such as those described in patent applications EP-A-0,412,704, EP-A-0,412,707, EP-A-0,640,105, WO 95/00578, EP-A-0,582,152 and WO 93/23009. These polymers are used in hair care for their styling properties. However, when these polymers are used, the fixing power, the hold of the hairstyle and the feel of the hair are still unsatisfactory.
The expression fixing power of the composition will be understood to denote the ability of this composition to give the hair cohesion such that the initial shape of the hairstyle is held.
Silicones are known which possess grafted polyoxyalkylene chains, also known as dimethicone copolyol according to the CTFA nomenclature. The Applicant has observed that these silicones lower the fixing power of compositions for holding the hairstyle.
The Applicant has discovered, surprisingly, that by combining at least one grafted silicone polymer with at least one copolymer having a linear polysiloxane/polyoxyalkylene block as repeating units, the fixing power of the compositions and the feel of the hair are substantially superior to those obtained with the grafted silicone polymer used alone.
The composition according to the invention is thus essentially characterized in that it contains, in a cosmetically or dermatologically acceptable medium, at least one grafted silicone polymer comprising a polysiloxane portion and a portion consisting of a non-silicone organic chain, one of the two portions constituting the main chain of the polymer, the other being grafted onto the said main chain, and at least one copolymer having a linear polysiloxane/polyoxyalkylene block as repeating units.
The grafted silicone polymers according to the invention are preferably chosen from polymers having a non-silicone organic skeleton grafted with monomers containing a polysiloxane, polymers having a polysiloxane skeleton grafted with non-silicone organic monomers and mixtures thereof.
In the following text, in accordance with what is generally accepted, the term silicone or polysiloxane is understood to denote any organosilicon polymer or oligomer having a linear or cyclic, branched or crosslinked structure of variable molecular weight, obtained by polymerization and/or polycondensation of suitably functionalized silanes, and consisting essentially of a repetition of main units in which the silicon atoms are linked together by oxygen atoms (siloxane bonding ≡Si—O—Si≡), optionally substituted hydrocarbon radicals being linked directly via a carbon atom to the said silicon atoms. The most common hydrocarbon radicals are alkyl radicals, especially C
1
-C
10
alkyl radicals, and in particular methyl, fluoroalkyl radicals, aryl radicals and in particular phenyl, and alkenyl radicals and in particular vinyl; other types of radicals which can be linked, either directly or via a hydrocarbon radical, to the siloxane chain are, especially, hydrogen, halogens and in particular chlorine, bromine or fluorine, thiols, alkoxy radicals, polyoxyalkylene (or polyether) radicals and in particular polyoxyethylene and/or polyoxypropylene, hydroxyl or hydroxyalkyl radicals, substituted or unsubstituted amine groups, amide groups, acyloxy radicals or acyloxyalkyl radicals, hydroxyalkylamino or aminoalkyl radicals, quaternary ammonium groups, amphoteric or betaine groups, anionic groups such as carboxylates, thioglycolates, sulphosuccinates, thiosulphates, phosphates and sulphates, needless to say this list not being limiting in any way (so-called “organomodified” silicones).
In the following text, in accordance with what is generally accepted, the expression “polysiloxane macromer” is understood to refer to any monomer containing a polysiloxane-type polymer chain in its structure.
The polymers containing a non-silicone organic skeleton grafted with monomers containing a polysiloxane, in accordance with the present invention, consist of an organic main chain formed from organic monomers containing no silicone, on which is grafted, inside the said chain and optionally on at least one of its ends, at least one polysiloxane macromer.
The non-silicone organic monomers constituting the main chain of the grafted silicone polymer can be chosen from monomers containing ethylenic unsaturation which are polymerizable via a radical route, monomers which are polymerizable by polycondensation, such as those forming polyamides, polyesters or polyurethanes, and monomers which involve ring opening, such as those of the oxazoline or caprolactone type.
The polymers containing a non-silicone organic skeleton grafted with monomers containing a polysiloxane, in accordance with the present invention, can be obtained according to any means known to those skilled in the art, in particular by reaction between (i) a starting polysiloxane macromer which is correctly functionalized on the polysiloxane chain and (ii) one or more non-silicone organic compounds, themselves correctly functionalized with a function which is capable of reacting with the functional group(s) borne by the said silicone, forming a covalent bond; a classic example of such a reaction is the radical reaction between a vinyl group borne on one of the ends of the silicone with a double bond of a monomer containing ethylenic unsaturation in the main chain.
The polymers containing a non-silicone organic skeleton grafted with monomers containing a polysiloxane, in accordance with the invention, are more preferably chosen from those described in U.S. Pat. Nos. 4,693,935, 4,728,571 and 4,972,037 and patent applications EP-A-0,412,704, EP-A-0,412,707, EP-A-0,640,105 and WO 95/00578. These are copolymers obtained by radical polymerization starting with monomers containing ethylenic unsaturation and silicone macromers having a terminal vinyl group, or alternatively copolymers obtained by reaction of a polyolefin comprising functionalized groups and a polysiloxane macromer having a terminal function which is reacted with the said functionalized groups.
One particular family of grafted silicone polymers which is suitable for carrying out the present invention consists of silicone grafted copolymers comprising:
a) from 0 to 98% by weight of at least one lipophilic monomer (A) of low lipophilic polarity containing ethylenic unsaturation, which is polymerizable via a radical route;
b) from 0 to 98% by weight of at least one polar hydrophilic monomer (B) containing ethylenic unsaturation, which is copolymerizable with the (A)-type monomer(s);
c) from 0.01 to 50% by weight of at least one polysiloxane macromer (C) of general formula:
X(Y)
n
Si(R)
3−m
Z
m
(I)
where:
X denotes a vinyl group which is copolymerizable with the monomers (A) and (B);
Y denotes a divalent bonding group;
R denotes a hydrogen, a C
1
-C
6
alkyl or alkoxy or a C
6
-C
12
aryl;
Z denotes a monovalent polysiloxane unit having a number-average molecular weight of at least 500;
n is 0 or 1 and m is an integer ranging from 1 to 3;
the percentages being calculated relative to the total weight of the monomers (A), (B) and (C).
These polymers are described, along with processes for their preparation, in U.S. Pat. Nos. 4,693,935, 4,728,571 and 4,972,037 and in patent applications EP-A-0,412,704, EP-A-0,412,707 and EP-A-0,640,105. They have a number-average molecular weight preferably ranging from 10,000 to 2,000,000 and preferably a glass transition temperature Tg or a crystalline melting point Tm of at least −20° C.
As examples of lipophilic monomers (A), mention may be made of acrylic or methacrylic acid esters of C
1
-C
18
alcohols; styrene; polystyrene macromers; vinyl acetate; vinyl propionate; a-methylstyrene; tert-butylstyrene; butadiene; cyclohexadiene; ethylene; propylene; vinyltoluene; acrylic or methacrylic aci
Cauwet-Martin Daniele
Dubief Claude
Dupuis Christine
Dees Jose′ G.
Finnegan Henderson Farabow Garrett & Dunner L.L.P.
L'Oreal
Williamson Michael A.
LandOfFree
Cosmetic composition including at least one silicone-grafted... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Cosmetic composition including at least one silicone-grafted..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cosmetic composition including at least one silicone-grafted... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2949963