Method and apparatus for transmitting data from a plurality...

Pulse or digital communications – Transceivers – Modems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06498807

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to modem communications, and, more particularly, to a method and apparatus for transmitting data to and from multiple end-users in a discrete multi-tone (DMT) modem communications system.
2. Description of the Related Art
The telecommunications industry has undergone explosive growth over the past several years. A significant contribution to this growth has been the high demand for modern communication services, such as the Internet, which extend beyond traditional voice communications. Conventional landline telephone networks, which offer “Plain Old Telephone Service” (POTS), currently provide these modern services by transmitting data over a voice channel. The landline telephone network reaches nearly every household and business throughout the world, and has proven to be a relatively inexpensive medium for data transmission. Although dedicated data transmission networks also exist to provide these modem services, they are considerably more expensive to use. In addition, these data networks are not readily accessible to the general public, at least compared to the accessibility of the landline telephone network. Accordingly, a substantial portion of the public relies heavily on the landline telephone network as a cheaper alternative for providing these services.
With the increasing popularity of these modern services, however, the landline telephone network has rapidly become inefficient in handling these services due to limited bandwidth constraints. Currently, the landline network's 56.6 kilobits per second (KBPS) data transfer rate is not fast enough to keep up with the increasing complexity of these services. In addition, projected demand for other services, such as video-on-demand, teleconferencing, interactive TV, etc. is likely to exacerbate the limited bandwidth problem.
To meet the demand for high-speed data communications, designers have sought innovative and cost-effective solutions that take advantage of the existing landline telephone network infrastructure. Of these solutions, the digital subscriber line (DSL) technology uses the existing landline network infrastructure of POTS for broadband communications, thus enabling an ordinary twisted pair to transmit video, television, and high-speed data.
DSL technology leaves the existing POTS service of the landline network undisturbed. Traditional analog voice band interfaces use the same frequency band (i.e., 0-4 kHz) for data transmission as for telephone service, thereby preventing concurrent voice and data use. Asymmetric Digital Subscriber Line (ADSL) technology, a popular version of DSL, operates at frequencies above the voice channels from 100 kHz to 1.1 MHz. Thus, a single ADSL line is capable of offering simultaneous channels for voice and data transmission. The ADSL standard is fully described in ANSI TI.413 Issue 2, entitled “Interface Between Networks and Customer Installation—Asymmetric Digital Subscriber Line (ADSL) Metallic Interface, Rev. R4, dated Jun. 12, 1998, the entire contents of which is incorporated herein by reference.
ADSL systems utilize digital signal processing (DSP) to increase throughput and signal quality through common copper telephone wire. ADSL systems provide a downstream data transfer rate from the ADSL Point-of-Presence (POP) to the subscriber location at speeds of about 6 Megabits per second (MBPS), which is more than one-hundred times faster than the conventional 56.6 KBPS transfer rate currently available through the landline network.
The technology employed in TI.413-type ADSL modems is discrete multi-tone (DMT). The standard defines 256 discrete tones, with each tone representing a carrier signal that can be modulated with a digital signal for transmitting data. The specific frequency for a given tone is 4.3125 kHz multiplied by the tone number. Tone 1 is reserved for the voice band and tones 2-7 are reserved for the guard bands. Data is not transmitted near the voice band to allow for simultaneous voice and data transmission on a single line. Thus, the guard bands aid in isolating the voice band from the ADSL data bands. Typically, a splitter may be used to isolate any voice band signal from the data tones. Tones 8-32 are used to transmit data upstream (i.e., from the user), and tones 33-256 are used to transmit data downstream (i.e., to the user). Alternatively, all of the data tones 8-256 may be used for downstream data transmission, and the upstream data present on tones 8-32 could be detected using an echo cancellation technique, as is well established in the art. Because a larger number of tones are used for downstream communication than for upstream communication, the transfer is said to be asymmetric.
ADSL technology significantly boosts the data transfer rate of the landline telephone network to levels at least commensurate with, if not exceeding, the transfer rates of present data networks. Assuming all 256 tones are free of impairments, the data transfer rate defined by the ADSL standard is about 6 MBPS downstream and 640 KBPS upstream, significantly dwarfing today's data transfer rate standard on the landline telephone network.
Although ADSL technology dramatically increases the available bandwidth to a single user, the user generally does not require all of the additional bandwidth for his or her own purposes. As a result, a substantial portion of the additional bandwidth is not utilized, and the unused bandwidth is essentially a wasted resource.
The present invention is directed to overcoming, or at least reducing the effects of, one or more of the problems set forth above.
SUMMARY OF THE INVENTION
In one aspect of the present invention, a method is provided for transmitting data between a first modem and a second modem. The method includes generating first user data from each of a plurality of user devices coupled to a first modem, and accumulating a predetermined amount of the first user data corresponding to each of the user devices in a first buffer. The predetermined amount of accumulated first user data collectively forms first combined data. The method further includes modulating the first combined data to generate a first symbol, and transmitting the first symbol from the first modem to a second modem.
In another aspect of the present invention, a system is provided that includes a first modem, a second modem, a plurality of user devices. The user devices couple to the first modem and generate first user data. A first buffer, coupled between the first modem and the plurality of user devices, accumulates a predetermined amount of the first user data; the predetermined amount of accumulated first user data forms first combined data in the first buffer. A communications link couples the first modem and the second modem. The first modem modulates the first combined data to generate a first symbol, and transmits the first symbol to the second modem over the communications link.


REFERENCES:
patent: 3826872 (1974-07-01), MacGregor
patent: 3993862 (1976-11-01), Karr
patent: 5054034 (1991-10-01), Hughes-Hartogs
patent: 5608725 (1997-03-01), Grube et al.
patent: 5912895 (1999-06-01), Terry et al.
patent: 0 806 852 (1997-11-01), None
patent: WO99/03255 (1997-01-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for transmitting data from a plurality... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for transmitting data from a plurality..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for transmitting data from a plurality... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2947237

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.