Digital servo control system for use in disk drives

Dynamic magnetic information storage or retrieval – Automatic control of a recorder mechanism – Controlling the head

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06347018

ABSTRACT:

TECHNICAL FIELD
The present invention related to servo control systems which may be used in controlling the head positioning actuators in storage devices such as disk drives. More specifically, the invention relates to digital servo control systems involving efficient implementations of tracking and seeking servo control methods.
BACKGROUND ART AND BACKGROUND OF THE INVENTION
Various servo control systems are known in the art. U.S. Pat. No. 3,458,785 (Sordello) discloses an early example of a servo control system employing quadrature signals for providing position and velocity information, the system having fine and coarse positioning control algorithms. U.S. Pat. No. 4,135,217 (Jacques et al.) discloses a system which compensates for repeatable errors such as wobble of a disk, with stored “run-out” information being used to compensate for the errors. U.S. Pat. No. 4,412,161 (Cornaby) generally discloses a digitally implemented recursive servo control system. U.S. Pat. No. 4,486,797 (Workman) discloses a servo control system in which a preprogrammed velocity profile is used. U.S. Pat. No. 4,783,705 (Moon et al.) discloses an embedded sector servo system divided into separate track and seek control systems, the system including an automatic gain control function. U.S. Pat. No. 4,788,608 (Tsujisawa) discloses a control system for positioning read/write heads over a non-circular track, by using harmonics of the rotation period of the disk. U.S. Pat. No. 4,835,632 (Shih et al.) discloses a servo control system having different sampling and control frequencies for tracking and seek operations, the system apparently scaling or normalizing certain values during operation. U.S. Pat. No. 4,835,633 (Edel et al.) discloses a servo control system involving values calibrated for voice coil motor acceleration as a function of radial position using a polynomial curve fit.
U.S. Pat. No. 4,879,612 (Freeze et al.) discloses a servo control system claiming a purely digital seek mode but a hybrid tracking mode, the system using track identity information and sample testing to reduce errors. U.S. Pat. No. 4,890,172 (Watt et al.) discloses an automatic gain calibration system for a disk drive servo system. U.S. Pat. No. 4,907,107 (Sakurai) discloses a low level circuit for generating signals corresponding to sampled magnetic pulses. U.S. Pat. No. 4,914,644 (Chen et al.) discloses a servo control system including a model of coil current involving comparison of a velocity error to a predetermined value during long seeks, when the power amplifier is saturated. U.S. Pat. No. 4,914,725 (Belser et al.) discloses a servo control system including a “piggy-back” construction including a fine positioner carried by a coarse positioner, the dynamic range of the fine positioner being increased momentarily at the time of track capture, this patent naming a common inventor with an inventor of the present patent application. U.S. Pat. No. 4,942,564 (Hofer et al.) discloses a gain compensation system in which a test signal is introduced to determine the system's response for comparison to a previously stored value. U.S. Pat. No. 4,954,909 (Sengoku) discloses a system for determining movement of a recording head, especially for determining when it has hit a disk surface. U.S. Pat. No. 5,038,333 (Chow et al.) discloses a track-seeking apparatus having a track crossing detector for providing position information, this patent naming an inventor who is also a named inventor in the present patent application.
European Patent Application 0,390,467 (Ogino) discloses a digital servo control system in which certain variables are not calculated when an error value is substantially zero. Japanese Patent Document 63-316380 discloses a control system having a plurality of servo bit sample periods.
These patents, as well as any documents cited in this patent application, are incorporated herein by reference in their entirety.
In the field of magnetic disk drives, servo systems are required to accurately position read/write heads over a given substantially circular track on the disk, as well as efficiently move the heads from above one track to a new desired position above a second track. It is desirable in the “tracking” (or “position”) mode that the position of the read/write heads with respect to the track be maintained in the proper center position above the track. Similarly, when moving the heads from one track to another in the “seek” (or “velocity”) mode, it is desirable that the heads become stably centered above the destination track as soon as possible. These goals must be met even in the presence of anomalies such as changes to or occurrences in the disk drive mechanism, or deviations from perfect circularity in the tracks. These anomalies may involve aging, temperature changes, changes in orientation of the disk drive, humidity, shock and vibration. Specific performance objectives embodying these broad goals include reduction of tracking error (expressed as a percentage of the radial separation of the tracks), average access time (reflecting the average time required to move the read heads to a destination track in a typical read operation and provide the outside world with data from the disk), and bit error rate (BER, in bits per 10
n
).
Meeting these goals allows the disk drive's performance to be improved. If these goals are not met, misalignment or delayed alignment of the read/write heads with respect to the tracks cause increases in read/write errors and a slowdown in read or write operations.
Further objectives include reduction of the size of the disk drive itself. As recording densities improve, a hindering factor in reducing overall disk drive physical dimensions may be the size of the circuitry required to implement the servo system. Therefore, there is a need to provide a high-performance, reliable, and fast servo control system which is both economic and compact.
More specifically, various schemes are known today for placing position information on the surface of disks so that the position of the head over the disk can be determined. This position information, commonly referred to as servo information, may in some schemes occupy an entire surface of one disk. This “dedicated” scheme has the disadvantage that it occupies a substantial portion of the total area allotted for useful information. For example, in a two-disk system, there are four surfaces. If one of the surfaces is dedicated to servo information, at least 25% of the otherwise useable surface of the disks is used, purely for positioning information. As the physical size of disks becomes smaller with the progress of technology, dedication of an entire disk surface to servo information becomes increasingly unacceptable.
In a second scheme, called an “embedded” servo design, the servo information is recorded on every disk surface along with the user data areas. Although embedded servo designs have increased the servo area efficiency over dedicated schemes, known embedded servo schemes have typically involved complex servo data fields, which has forced larger amounts of disk area to be allocated to the positioning information. As the amount of area dedicated to positioning information increases, either the amount of useable data decreases, or the density of useable data storage increases, both of which are undesirable. Therefore, there is a need in the art to provide a servo control system in which there is no surface dedicated entirely to servo control information, and in which the area allocated to servo control information is reduced to a minimum while maintaining optimum seeking and tracking efficiency.
Known servo systems involve analog circuitry. Use of analog circuitry in servo systems can involve reduced tolerance to noise. Clearly, noise-contaminated signals cause degradation in system performance, so that a commensurate reduction in noise-intolerant components is desirable. Therefore, there is a need in the art to provide a totally digitally-implemented servo control system.
The disadvantages of analog or hybrid circuits are not

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Digital servo control system for use in disk drives does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Digital servo control system for use in disk drives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Digital servo control system for use in disk drives will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2941424

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.