Data processing: generic control systems or specific application – Specific application – apparatus or process – Product assembly or manufacturing
Reexamination Certificate
1998-01-02
2002-08-20
Gordon, Paul P. (Department: 2121)
Data processing: generic control systems or specific application
Specific application, apparatus or process
Product assembly or manufacturing
C700S110000, C702S035000, C356S237500, C382S149000
Reexamination Certificate
active
06438438
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a method and system for efficiently manufacturing semiconductor electric or electronic devices or the like with high reliability and an inspection method and system for inspecting the semiconductor devices.
A conventional manufacturing process control system controls a manufacturing process on the basis of data obtained through the automatic inspection and repair of products. When the manufacturing process control system inspects products by an automatic inspecting system, the parameters of defect identifying standards to be used by the automatic inspection system are changed properly to enhance the reliability of inspection when the automatic inspection system provides excessively large amount of false information regarding nondefective products as defective or when residual defect ratio is excessively large.
A product inspected by the automatic inspection system and proved to be nondefective is sent to the next process, and repairable defective products are sent to a repairing process and are sent to the next process after being repaired. The operator monitors the condition of the manufacture of products statistically and, when necessary, changes the parameters for controlling the condition of the manufacturing machines to regulate the condition of the manufacturing process.
More concretely, in a semiconductor manufacturing process, presumably defective products found by using a visual inspection instrument, such as disclosed in Japanese Patent Laid-open (Kokai) No. 61-151410 or No. 62-43505, or a foreign matter inspection instrument, such as disclosed in Japanese Patent Laid-open (Kokai) No. 54-101390, for specifying presumably defective products are examined visually by means of a microscope included in the inspection instrument or a separate microscope to classify defects including foreign matters and defective patterns, and false information. A method of classifying detected defects using a multifocus image is disclosed in Japanese Patent Laid-open (Kokai) No. 2-170279.
Recently, Galai Laboratory of Israel and ADE Co. of the U.S.A. published cooperatively an automatic classification technique (M. Luria, E. Adin, M. Moran, D. Yaffe and J. Kawaski, “Automatic Defect Classification Using Fuzzy Logic”, ASMC '93 Boston Mass., 1993), the details of which is unknown. Results of classification of defects are analyzed, manufacturing machines presumably causative of defects are specified on the basis of the results of analysis and results of inspection carried out in other processes. Skilled members of the staff of the manufacturing process relevant to the specified manufacturing machine adjust the parameters for controlling the manufacturing machine and correct the manufacturing machine on the basis of their experiences.
In a manufacturing process for manufacturing thin-film transistor wafer for liquid crystal displays, short circuit defects are detected by using a short circuit inspecting instrument, such as disclosed in Japanese Patent Laid-open (Kokai) No. 4-72552, the short circuit defects are confirmed visually, and the short circuit defects are classified by causes including particles, aluminum residues and through holes.
The foregoing prior art designed for the automation of inspection or the automation of inspection and repair for a system for controlling manufacturing processes on the basis of the results of automatic inspection and repair of products has the following problems. The prior art automatic inspection system consists of a detecting system for detecting defects in the product, and an information processing system for analyzing information provided by the detecting system to see whether or not the product has defects and to classify defects by category. Therefore, when the quality of the product varies according to the variation of the manufacturing process within an allowable range and the automatic inspection system decides that the product is defective, the automatic inspection system needs readjustment.
Since the detection system and the information processing system are the inherent components of the automatic inspection system as mentioned above, it is difficult to alter the detection system and the information processing system substantially. Accordingly, the sensitivity of the like of the detecting system or parameters for controlling the information processing system is changed for the readjustment of the automatic inspection system. In most cases, the readjustment of the automatic inspection system to adjust the inspection criteria of the automatic inspection system to inspecting standards used in the manufacturing process is carried out by a trial-and-error method at the site of manufacture, which takes much time to make the automatic inspection apparatus function normally. If the automatic inspection system is an in-line inspecting apparatus, the operation of the associated production line must be suspended during the adjustment of the automatic inspection system.
Another automatic inspection system inspects a product to see whether or not the product is defective and, if the product has a defect, provides only information about the position of the defect in the product. When this automatic inspection system is used, defects must be classified by the operator, and it is possible to examine the parameters of the automatic inspection system to see if the parameters are proper only after the classification and analysis of the defects by the operator. Therefore, the automatic inspection system not only needs much time before the same starts normally functioning, the inspection system has the possibility of inspecting products according to inappropriate inspecting standards while the defects are being classified and analyzed.
Accordingly, if the automatic inspection system is not adjusted properly, products are inspected and repaired erroneously.
In the prior art automatic inspection system, nothing is considered about means for making the operator make a decision about whether or not correction is necessary, i.e., whether or not the defects are classified correctly, to control a correcting operation and for feeding back information about the results of examination of the results of defect classification made by the automatic inspection system by the operator to the automatic inspection system.
Similarly, when defect detection information provided by the automatic inspection system in an imperfectly adjusted condition is used as means for adjusting the manufacturing machine for manufacturing the products, it is impossible to adjust the parameters for controlling the operating condition of the manufacturing machine for properly manufacturing the products. Since correcting information produced on the basis of the results of inspection provided by the automatic inspection system is fed back to the automatic inspection system, the complete readjustment of the automatic inspection system takes much time.
Furthermore, although accurate information about defects in products and information about the working condition of a manufacturing process are necessary for securing the stability of the manufacturing process, it requires much time to examine the correlation between the manufacture of defective products and the condition of the manufacturing process, because the accurate analysis of defects and the readjustment of the manufacturing process are carried out simultaneously when the products are inspected by the aforesaid prior art automatic inspection system.
Still further, since the prior art automatic inspection system does not attach the results of inspection and the bases of the results of inspection to the inspected product, it is impossible to find which manufacturing process is causative of the defect or the causal relationship between a defect detected at the final stage of manufacture and a defect detected at the middle stage of manufacture is unknown even if the defect is detected by inspection in the next process or by final inspection.
SUMMARY OF THE INVENTION
It is an object of the
Doi Hideaki
Ono Makoto
Takagi Yuji
Gordon Paul P.
Hitachi , Ltd.
Mattingly Stanger & Malur, P.C.
LandOfFree
Method and system for manufacturing semiconductor devices,... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for manufacturing semiconductor devices,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for manufacturing semiconductor devices,... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2932967