Method of sequestering carbon dioxide with a fertilizer...

Chemical apparatus and process disinfecting – deodorizing – preser – Process disinfecting – preserving – deodorizing – or sterilizing – Process of storage or protection

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C047S001400

Reexamination Certificate

active

06440367

ABSTRACT:

BACKGROUND OF THE INVENTION
The field of the invention is controlling the amount of carbon dioxide (CO
2
) in the atmosphere. This may have a significant effect on global climate change, including global warming.
The carbon dioxide content of the atmosphere has been increasing. This is based on measurements over the last 40 years or more. There is concern that this increase may result in global climate change, which over time may have an adverse effect on weather, sea level and human survival.
This concern has lead to the 1992 Rio Treaty and the Kyoto Protocol of 1997. These call for significant decrease in the amount of carbon dioxide released to the atmosphere from the burning of fossil fuels by the industrial world. If these reductions are put into effect, then serious adverse consequences are expected. The economy of the industrialized world could be significantly, adversely affected. This could result in a loss of jobs, decreases in the standard of living, reduction in life span and possible political unrest. Moreover, this would not be a solution because it does not permit or require a reversal of the currently increasing levels of carbon dioxide in the atmosphere.
Carbon dioxide is released into the atmosphere both by the burning of fossil fuels, and by the recycling of plant materials. Carbon dioxide is removed from the atmosphere by the photosynthesis of plants on land and in the oceans. This removal of carbon dioxide from the atmosphere may be referred to as a carbon dioxide sink. It is the net flow (releases minus sinks) that has caused the increase in atmospheric carbon dioxide level which is of present concern. Without human intervention, the net flow of carbon dioxide into and out of the atmosphere is roughly zero, with the sources and sinks in rough balance. When fossil fuels are burned, only about 60 percent of the released carbon dioxide is subsequently taken out of the atmosphere by natural sinks. The remaining about 40 percent increases the carbon dioxide level of the atmosphere, leading to concern over climate changes.
The net carbon dioxide released into the atmosphere can be reduced, but not eliminated, by increasing the efficiency of power-producing equipment and by harnessing wind and solar power. Generally speaking, these approaches are costly and may be reaching their practical limits. We have been increasing the efficiency of heat engines for over 200 years, and may be approaching the limits of basic thermodynamics. It is very costly to harness low intensity power sources such as wind, waves, sunlight and ocean thermal gradients, especially where energy requirements are large. Moreover, these approaches can only reduce the increase in carbon dioxide concentration, never eliminate the increase. Therefore, these approaches cannot adequately address the concern over the increasing carbon dioxide content of the atmosphere.
The technology of carbon dioxide sink enhancement is in its infancy. The sequestering of carbon dioxide in geological formations is both beneficial and inexpensive, if the carbon dioxide is relatively concentrated. An example of relatively concentrated carbon dioxide is the off-gas after removal of methane from natural gas containing carbon dioxide. However, there is relatively little carbon dioxide available in such concentrated form. Most carbon dioxide is available in concentrations of from about 10 percent to about 25 percent in exhaust gases from the combustion of fossil fuels. It is quite expensive to increase the concentration of carbon dioxide from about 10 or 25 percent to about 100 percent. The preferable course of action appears to be the use of sunlight and plants to do the concentrating, and subsequently to sequester the resulting plant material in some manner.
One approach would be to plant trees. However, there is not enough land to plant sufficient trees to zero out the net carbon dioxide production. Even if there were enough land, we would have to find a place to store the resulting wood after about 50 to about 100 years, such that the wood would not rot and release carbon dioxide to the atmosphere. Thus, this approach would not sequester carbon dioxide for a relatively long period of time.
The best place to enhance plant growth is in the oceans. Ninety-eight percent of the surface of the ocean is a barren desert with almost no plant life. About sixty percent of the plant life (phytoplankton) in the oceans of the world arises from about only two percent of the surface of the oceans. A reduction in the net flow of carbon dioxide may be achieved, if some of that ninety-eight percent of the surface of the ocean is made as productive as that two percent.
SUMMARY OF THE INVENTION
A method of sequestering carbon dioxide comprises the following steps: testing an area of the surface of an ocean for suitability; fertilizing a suitable area of the surface of the ocean to increase plant life and sequester carbon dioxide; and measuring the amount of carbon dioxide that has been sequestered. The testing includes a determination of the diffusion coefficient in the surface of the ocean so that an optimum pattern of fertilization can be designed. The fertilizer preferably comprise an iron chelate that prevents the iron from precipitating to any significant extent. The preferred chelates include lignin, and particularly lignin acid sulfonate. The fertilizing preferably includes a ship dispersing liquid fertilizer in a spiral pattern which starts at the center of the spiral that is marked by a buoy that floats with the current. The method may include the additional step of reporting the amount of carbon dioxide that has been sequestered. An area of the surface of an ocean is suitable if both at least one nutrient is missing to a significant extent, and the water is deep. A nutrient is missing to a significant extent, if the metabolism of carbon dioxide is reduced to a significant extent by the level of the nutrient in the water. An appropriate amount of a missing nutrient is an amount to raise the concentration of the nutrient at the ocean surface so that the metabolism of carbon dioxide is no longer reduced to a significant extent by the concentration of the nutrient. The depth of the water is preferable at least about 5,000 feet (about 1524 meters), more preferably at least about 10,000 feet (about 3048 meters), and most preferably at least about 15,000 feet (about 4572 meters). The fertilizing creates a new verdant zone, preferably in the ocean surface above very deep water. The testing and reporting may be carried out by any of a number of methods that are known to one of ordinary skill in the art. The reporting may be carried out in a number of forms. Conventional forms would include printing the report on paper or another substrate, or storing the report in magnetic media or optical media. The report may be in a form required by a governmental authority. Such governmental authority may monitor the amount of carbon dioxide that is released into the atmosphere by a particular person or company. The amount of carbon dioxide released may be a debit on the balance sheet of such person or company. The governmental authority may allow credits on such balance sheet for the amount of carbon dioxide stated in such report as being sequestered.


REFERENCES:
patent: 5019149 (1991-05-01), Hawkins et al.
patent: 5433173 (1995-07-01), Markels, Jr.
patent: 5535701 (1996-07-01), Markels, Jr.
patent: 5965117 (1999-10-01), Howard, Jr. et al.
patent: 5967087 (1999-10-01), Markels, Jr.
patent: 5992089 (1999-11-01), Jones et al.
patent: 6200530 (2000-03-01), Markels, Jr.
patent: 6056919 (2000-05-01), Markels, Jr.
patent: 48-83273 (1973-07-01), None
Davies, Anthony Geoffrey. “Iron, chelation, and the growth of marine phytoplankton. I. Growth kinetics and chlorophyll production in cultures of the euryhaline flagellateDunalliela tertiolectaunder iron-limiting conditions,” J. Mar. Biol. Ass. U.K. (1970), 50(1), pp. 65-86.*
“Predominance of vertical loss of carbon from surface waters of the equatorial Pacific Ocean”, Dennis A. Hansell, Nicholas R. Bates an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of sequestering carbon dioxide with a fertilizer... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of sequestering carbon dioxide with a fertilizer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of sequestering carbon dioxide with a fertilizer... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2929741

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.