Method for isolating a polynucleotide of interest from the...

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S022100, C536S024300, C536S024310, C536S024320, C536S024330, C435S006120, C435S007100, C435S091100, C435S091200, C435S252100

Reexamination Certificate

active

06492506

ABSTRACT:

I. BACKGROUND OF THE INVENTION
The present invention pertains to a method for isolating a polynucleotide of interest that is present in the genome of a mycobacterium strain and/or is expressed by said mycobacterium strain and that is absent or altered in the genome of a different mycobacterium strain and/or is not expressed in said different mycobacterium strain, said method comprising the use of at least one clone belonging to a genomic DNA library of a given mycobaterium strain, said DNA library being cloned in a bacterial artificial chromosome (BAC). The invention concerns also polynucleotides identified by the above method, as well as detection methods for mycobacteria, particularly
Mycobacterium tuberculosis
, and kits using said polynucleotides as primers or probes. Finally, the invention deals with BAC-based mycobacterium DNA libraries used in the method according to the invention and particularly BAC-based
Mycobacterium tuberculosis
and
Mycobacterium bovis
BCG DNA libraries.
Radical measures are required to prevent the grim predictions of the World Health Organisation for the evolution of the global tuberculosis epidemic in the next century becoming a tragic reality. The powerfill combination of genomics and bioinformatics is providing a wealth of information about the etiologic agent,
Mycobacterium tuberculosis
, that will facilitate the conception and development of new therapies. The start point for genome sequencing was the integrated map of the 4.4 Mb circular chromosome of the widely-used, virulent reference strain,
M. tuberculosis
H37Rv and appropriate cosmids were subjected to systematic shotgun sequence analysis at the Sanger Centre.
Cosmid clones (Balasubramanian et al., 1996; Pavelka et al., 1996) have played a crucial role in the
M. tuberculosis
H37Rv genome sequencing project. However, problems such as under-representation of certain regions of the chromosome, unstable inserts and the relatively small insert size complicated the production of a comprehensive set of canonical cosmids representing the entire genome.
II. SUMMARY OF THE INVENTION
In order to avoid the numerous technical constraints encountered in the state of the art, as decribed hereabove, when using genomic mycobacterial DNA libraries constructed in cosmid clones, the inventors have attempted to realize genomic mycobacterial DNA libraries in an alternative type of vectors, namely Bacterial Artificial Chromosome (BAC) vectors.
The success of this approach depended on whether the resulting BAC clones could maintain large mycobacterial DNA inserts. There are various reports describing the successful construction of a BAC library for eucaryotic organisms (Cai et al., 1995; Kim et al., 1996; Misumi et al., 1997; Woo et al., 1994; Zimmer et al., 1997) where inserts up to 725 kb (Zimmer et al., 1997) were cloned and stably maintained in the
E. coli
host strain.
Here, it is shown that, surprisingly, the BAC system can also be used for mycobacterial DNA, as 70% of the clones contained inserts in the size of 25 to 104 kb.
This is the first time that bacterial, and specifically mycobacterial, DNA is cloned in such BAC vectors.
In an attempt to obtain complete coverage of the genome with a minimal overlapping set of clones, a Bacterial Artificial Chromosome (BAC) library of
M. tuberculosis
was constructed, using the vector pBeloBAC11 (Kim et al., 1996) which combines a simple phenotypic screen for recombinant clones with the stable propagation of large inserts (Shizuya et al., 1992). The BAC cloning system is based on the
E. coli
F-factor, whose replication is strictly controlled and thus ensures stable maintenance of large constructs (Willets et al., 1987). BACs have been widely used for cloning of DNA from various eucaryotic species (Cai et al., 1995; Kim et al., 1996; Misumi et al., 1997; Woo et al., 1994; Zimmer et al., 1997). In contrast, to our knowledge this report describes the first attempt to use the BAC system for cloning bacterial DNA.
A central advantage of the BAC cloning system over cosmid vectors used in prior art is that the F-plasmid is present in only one or a maximum of two copies per cell, reducing the potential for recombination between DNA fragments and, more importantly, avoiding the lethal overexpression of cloned bacterial genes. However, the presence of the BAC as just a single copy means that plasmid DNA has to be extracted from a large volume of culture to obtain sufficient DNA for sequencing and it is described here in the examples a simplified protocol to achieve this.
Further, the stability and fidelity of maintenance of the clones in the BAC library represent ideal characteristics for the identification of genomic differences possibly responsible for phenotypic variations in different mycobacterial species.
As it will be shown herein, BACs can be allied with conventional hybridization techniques for refined analyses of genomes and transcriptional activity from different mycobacterial species.
Having established a reliable procedure to screen for genomic polymorphisms, it is now possible to conduct these comparisons on a more systematic basis than in prior art using representative BACs throughout the chromosome and genomic DNA from a variety of mycobacterial species.
As another approach to display genomic polymorphisms, the inventors have also started to use selected H37Rv BACs for “molecular combing” experiments in combination with fluorescent in situ hybridization (Bensimon et al., 1994; Michalet et al., 1997). With such techniques the one skilled in the art is enabled to explore the genome of mycobacteria in general and of
M. tuberclosis
in particular for further polymorphic regions.
The availability of BAC-based genomic mycobacterial DNA libraries constructed by the inventors have allowed them to design methods and means both useful to identify genomic regions of interest of pathogenic mycobacteria, such as
Mycobacterium tuberculosis
, that have no counterpart in the corresponding non-pathogenic strains, such as
Mycobacterium bovis
BCG, and useful to detect the presence of polynucleotides belonging to a specific mycobacterium strain in a biological sample.
By a biological sample according to the present invention, it is notably intended a biological fluid, such as plasma, blood, urine or saliva, or a tissue, such as a biopsy.
Thus, a first object of the invention consists of a method for isolating a polynucleotide of interest that is present in the genome of a mycobacterium strain and/or is expressed by said mycobacterium strain and that is absent or altered in the genome of a different mycobacterium strain and/or is not expressed in said different mycobacterium strain, said method comprising the use of at least one clone belonging to a genomic DNA library of a given mycobaterium strain, said DNA library being cloned in a bacterial artificial chromosome (BAC).
The invention is also directed to a polynucleotide of interest that has been isolated according to the above method and in partoular a polynucleotide containing one or several Open Reading Frames (ORFs), for example ORFs encoding either a polypeptide involved in the pathogenicity of a mycobacterium strain or ORFs encoding Polymorphic Glycine Rich Sequences (PGRS).
Such polynucleotides of interest may serve as probes or primers in order to detect the presence of a specific myobacterium strain in a biological sample or to detect the expression of specific genes in a particular mycobacterial strain of interest.
The BAC-based genomic mycobacterial DNA libraries generated by the present inventors are also part of the invention, as well as each of the recombinant BAC clones and the DNA insert contained in each of said recombinant BAC clones.
The invention also pertains to methods and kits for detecting a specific mycobacterium in a biological sample using either at least one recombinant BAC clone or at least one polynucleotide according to the invention, as well as to methods and kits to detect the expression of one or several specific genes of a given mycobacterial strain present in a biological

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for isolating a polynucleotide of interest from the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for isolating a polynucleotide of interest from the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for isolating a polynucleotide of interest from the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2929578

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.