Color-stable polyalkyleneimine derivatives, fiberglass...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From carboxylic acid or derivative thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S329100, C528S332000, C528S335000, C528S336000, C528S339000, C528S339300, C524S538000, C524S600000, C524S606000, C524S800000, C524S802000, C252S400500, C428S357000, C428S364000, C428S378000, C428S394000, C428S395000, C008S115510, C008S115600

Reexamination Certificate

active

06399741

ABSTRACT:

BACKGROUND OF THE INVENTION
Fiber processing, including, for example, the manufacture of continuous strands from numerous monofilaments or individual fibers, usually involves the use of equipment which subjects the monofilaments, individual fibers and/or continuous strands to high speed, wherein the fiber materials are subjected to destructive abrasive forces which can be the result of both mutual abrasion between strands and/or between the strands and the equipment. At any rate, it is usual to provide some lubrication for the fibers. Fiber lubricants are commonly used during the production of many different materials, including fiberglass and synthetic fibers such as polyesters, polyolefins, polyacrylics, polyamides, etc. Fiber lubricants are typically applied to fibers as a component of a sizing composition, usually immediately after fiber formation, but before fibers are gathered into a bundle, and may also added to fiber materials to provide lubricity during subsequent usage.
One class of fiber lubricants is polyethyleneimine polyamides. Polyethyleneimine polyamides are commonly used to lubricate fiberglass. Polyethyleneimine polyamides generally provide adequate lubricity in that filaments breaking, i.e., fuzz formation is limited during processing and fiber tensile strength is generally improved. However, in some processing applications where the treated material is exposed to heat, air and the combination thereof, the polyethyleneimine polyamides may become discolored, evidenced by a yellowing of the material.
One method for combating the unattractive yellowing that occurs during such processing of fibers such as fiberglass which have been treated with sizing compositions including polyethyleneimine polyamide lubricants, and/or other compounds associated with yellowing, is to add a fluorescent whitening agent to the sizing composition prior to use. Fluorescent whitening agents can be expensive, and may be problematic in terms of formulation, stability, solubility, etc.
Discoloration will not necessarily render the fiber material unusable, but for aesthetic reasons, discoloration should be avoided. Thus, there is a need in the art for a fiberglass lubricant with the lubricating properties of polyethyleneimine polyamides which possesses color stability when exposed to heat and/or air.
BRIEF SUMMARY OF THE INVENTION
The present invention relates to a polymer derivative, and more particularly, to a polyalkyleneimine polyamide-derivative which can be used as a fiber lubricant. Polymer derivatives in accordance with the present invention are particularly suitable as lubricants for fiberglass processing. Polymer derivatives in accordance with the present invention, and lubricant and sizing compositions containing such polymer derivatives, exhibit excellent color stability (i.e., reduced yellowing) when exposed to heat and/or air during or subsequent to fiber processing, as compared to commercially available polyalkyleneimine polyamide fiber lubricants.
One aspect of the present invention includes a polymer derivative which comprises a polyalkyleneimine backbone which has a number of reactive amino functionalities, each reactive amino functionality having at least one reactive hydrogen atom, wherein a color stabilizing-effective amount of the number of reactive amino functionalities have a substituent-compound independently selected from carboxylic acids and amine-protecting compounds substituted in place of a reactive hydrogen atom, and wherein at least about 20% of the substituent-compounds are selected from the group consisting of carboxylic acids. In preferred embodiments of this and other aspects of the present invention, the polyalkyleneimine backbone is a polyethyleneimine having a molecular weight of from about 1000 to about 1800 and the amine-protecting compound comprises urea.
Another aspect of the present invention includes a polymer derivative prepared by a process which comprises reacting a polyalkyleneimine having a number of reactive amino functionalities with a carboxylic acid and an amine-protecting compound, under conditions which are sufficient to derivatize a color stabilizing-effective amount of the reactive amino functionalities with either the carboxylic acid or the amine-protecting compound, wherein at least about 20% of the reactive amino functionalities are derivatized with the carboxylic acid.
Yet another aspect of the present invention includes a process for preparing a polymer derivative wherein the process comprises: (a) providing a polyalkyleneimine having a number of reactive amino functionalities per mole; (b) reacting the polyalkyleneimine with at least one carboxylic acid and an amine-protecting compound, wherein a total molar amount of the at least one carboxylic acid and the amine-protecting compound is used which is sufficient to derivatize a color stabilizing-effective amount of the number of reactive amino functionalities per mole of polyalkyleneimine. In some preferred embodiments of this and other aspects of the present invention, a polyethyleneimine having a molecular weight of about 1200 is reacted with acetic acid, pelargonic acid and urea, wherein a total molar amount of the acetic acid, pelargonic acid and urea is substantially equal to the number of reactive amino functionalities per mole of polyethyleneimine. The present invention also includes polymer derivatives prepared by processes in accordance with this aspect of the invention.
Other aspects of the present invention include fiber lubricant compositions and sizing compositions comprising one or more polymer derivatives according to any one of the aspects or embodiments of the present invention.
The present invention also includes a method of lubricating a fiber material comprising providing a fiber material and contacting the fiber material with a polymer derivative according to any one of the aspects or embodiments of the present invention.
As used herein, the terms “react”, “substitute”, and “derivatize”, and their various tenses, all synonymously refer to a chemical reaction between a substituent-compound (i.e., a carboxylic acid or an amine-protecting compound) and a reactive amino functionality of a polyalkyleneimine.
DETAILED DESCRIPTION OF THE INVENTION
Polyalkyleneimines useful in accordance with the present invention include any polyalkyleneimines having reactive amino functionalities suitable for reaction with, for example, a carboxylic acid, such as, for example, the polyalkyleneimines described in U.S. Pat. No. 3,597,265, the entire contents of which are incorporated herein by reference, including mixtures of two or more different polyalkyleneimines. As used herein, the phrase “reactive amino functionality” shall refer to any primary or secondary nitrogen atom in a polyalkyleneimine. Also, as used herein, the terms “polyalkyleneimine backbone” and “polyethyleneimine backbone” refer to that portion of the resulting polymer derivative in accordance with the present invention which is derived from the original polyalkyleneimine or polyethyleneimine starting material, respectively.
The polyalkyleneimine, or the polyalkyleneimine backbone (which terms when referring to molecular weight are used synonymously), will preferably have a molecular weight of from about 300 to about 70000, and more preferably from about 400 to about 2500. Thus, when referring to the molecular weight of the polyalkyleneimine backbone of a polymer derivative in accordance with the present invention, such weights include reactive hydrogen atoms removed from the original polyalkyleneimine starting material upon substitution with a carboxylic acid or amine-protecting compound. Particularly preferred polyalkyleneimines are polyethyleneimines. Preferred polyethyleneimines will have a molecular weight of from about 1000 to about 1800, with molecular weights of about 1200 being most preferred at least in part due to commercial availability and economics.
Polyalkyleneimines, and particularly polyethyleneimines, can be commercially obtained from a wide range of sources including, for example, Aceto Cor

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Color-stable polyalkyleneimine derivatives, fiberglass... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Color-stable polyalkyleneimine derivatives, fiberglass..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Color-stable polyalkyleneimine derivatives, fiberglass... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2928738

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.