Xenon metal halide lamp having improved thermal gradient...

Electric lamp and discharge devices – With gas or vapor – Having a particular total or partial pressure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C313S620000, C313S634000

Reexamination Certificate

active

06400076

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a xenon-metal halide lamp having improved thermal balance characteristics associated therewith. More particularly, this invention relates to such a xenon-metal halide lamp as exhibits a specific lamp envelope shape that insures a balanced thermal distribution within the discharge chamber so as to result in a lamp capable of extended life and higher brightness.
BACKGROUND OF THE INVENTION
Xenon metal halide lamps have been finding greater and greater use in the lighting field recently, particularly in the automotive lighting field or any other field where a high brightness light source with instant-on capabilities is required. One example of such a high brightness light source can be found in U.S. Pat. No. 5,239,230 by Mathews et al and assigned to the same assignee as the present invention and which is herein incorporated by reference. In this patent, a high brightness light source is disclosed having specific performance characteristics such as wall-loading, tensile strength of the lamp envelope material, convective stability and lamp operating voltage and mercury density; such characteristics being cooperatively balanced so as to achieve such high brightness with an arc discharge gap which is on the order of 4 millimeters or less in length, and operating at a fill density >50 mg/cc (>50 atmospheres). A central lighting system utilizing this high brightness light source is included in the commercial product offered by General Electric Company's Lighting Business as the Light Engine® centralized lighting system.
Such a centralized lighting system offers many advantages to lighting designers including the obvious advantage of requiring less space for light fixture or delivery devices; that is, equipment or devices that are needed for mounting and reflecting, refracting or otherwise delivering the light output in the desired pattern. In an automotive application for instance, it is a great advantage to disposing the light source away from the front end of the vehicle so as to allow more freedom in aerodynamic body styling of such vehicles. Having achieved success in designing a high brightness light source that can be disposed in one location and have the light output efficiently transmitted to one or more remote locations, the lamp designer still has other challenges to optimizing the design of such a high brightness light source. For instance, it would be desirable to provide the above described light source in a configuration that achieved a longer life expectancy than is presently achievable in spite of the extremely high operating pressure of the fill gas that is necessary to provide both high brightness and instant light. For instance, it is known that because of the pressure and temperatures at which the above-described light source operates, it has been found that this light source has a life expectancy of approximately 2000-4000 hours whereas it would be desirable that such a lamp exhibit a life expectancy on the order of about 2-3 times such a level.
In discovering a means for extending the life of such a high brightness light source, it was first necessary to understand the mechanism by which the end of life lamp failure occurred. Through empirical measurements taken using the above-described commercially available Light Engine light source, it was determined that for a xenon-metal halide lamp operated in a vertical orientation and powered by a DC source, a strong convection cell is generated inside the arc chamber of the lamp thereby causing a higher temperature at the cathode (upper) end than at the anode (lower) end and limiting lamp life thereby. Accordingly, it was determined that in order to extend lamp life to the desired level of approximately 6000 hours, it was necessary to find some way to limit the temperature gradient between the anode end and the cathode end of a DC powered, vertically oriented high brightness light source.
One known way for limiting temperature rises in a lamp is by use of a heat sink device. One such heat sink arrangement for a metal halide light source can be found in U.S. Pat. No. 5,204,578 issued to Dever et al on Apr. 20, 1993 and assigned to the same assignee as the present invention. In this patent, it is disclosed that a metal strip or cylindrically shaped metal piece can be disposed in contact with the outer surface of the arc tube chamber so as to draw heat thereto and away from the ends of the arc tube at which the electrodes are disposed. Though effective in operation with a light source that can be mounted individually within a headlamp assembly for instance, such a heat sink arrangement for a centralized light source which must couple light as efficiently as possible to remote locations, is not practical because of the amount of light that is blocked by the externally disposed metal pieces. Accordingly, it would be advantageous if a means for substantially reducing the thermal gradient between the anode and cathode elements of a DC operated, vertically oriented high brightness centralized light source could be developed that did not block light output.
It is also known that for the thermal operating characteristics of a light source with an elongated vertical arc tube, the convective heat load at the upper end of said elongated vertical arc tube is proportional to the arc tube radius to the fourth power. This relationship is discussed by D. M. Cap in the paper “Grashof Numbers and Swirling Arcs”, Advanced Engineering #931, published Sep. 2, 1970. Though providing guidance relative to the property of convection velocity and thus heat loading, such an approach is not sufficient to attain a high brightness, short-arc discharge light source such as provided by the above-referenced Light Engine lighting system. For such a light source, one must consider maintaining the design features necessary to achieve the high brightness characteristics. From the above-referenced Mathews patent for the Light Engine light source, it is known that to achieve the desired level of brightness, certain design parameters must be simultaneously satisfied. For instance, to achieve a brightness level in excess of 50,000 lumens per square centimeter of arc gap unit area, the mercury density must be within a specific range of values, the arc gap must be less than approximately 4 millimeters, and the wall loading must be less than 25 watts per centimeter squared of arc tube surface area, and preferentially approximately 20 watts per centimeter with a tensile strength of a certain value to ensure the integrity of the arc tube. In order to meet these and other design requirements, a number of parameters must be balanced so that optimizing one or some of the parameters does not result in destabilizing the lamp or reducing the brightness output. Accordingly, it would be advantageous to design a high brightness light source with a unique envelope structure that would result in improved thermal operating properties for the light source without risking a loss in the amount of light output otherwise attainable.
One example of a light source having a non-ellipsoidally shaped arc chamber can be found in U.S. Pat. No. 4,594,529 issued to de Vrijer on Jun. 10, 1986. This patent discloses an elongated arc chamber but does not address the problems associated with lamp life related to heat load properties; the elongated arc is provided for the purpose of achieving a long arc discharge which is horizontally oriented and is utilized as a single direct source of light rather than a high brightness light source which is centrally located and remotely distributed.
Another problem associated with the operation of the high brightness light source at high pressure such that a significant thermal gradient exists between the cathode end (top) and the anode end (bottom) of the arc chamber was that, because of the higher operating temperatures at the top region, a pool of metal halide could not exist therein; the only metal halide pool available for use in the arc discharge came from the bottom region. Therefore, it

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Xenon metal halide lamp having improved thermal gradient... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Xenon metal halide lamp having improved thermal gradient..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Xenon metal halide lamp having improved thermal gradient... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2922654

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.