Early-fetal-heartbeat-detection device and method

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06379305

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a portable Doppler fetal heartbeat measurement device and a method of use for early detection of fetal heartbeat. More specifically, this invention relates to the adaptation of an intravaginal probe for use with a standard Doppler fetal heartbeat measurement device base unit and a method of use for detection of fetal heartbeat from seven to twelve weeks gestation.
2. Description of the Related Art
Christian Doppler first described what is now known as the Doppler effect in the 19th century. In the 20th century Doppler's principle has been harnessed in the optical, radio and ultrasound sciences to produce many useful devices. Doppler ultrasound techniques for medical diagnostic purposes are well known. For example, see Atkinson and Woodcock, DOPPLER ULTRASOUND AND ITS USE IN CLINICAL MEASUREMENT, Academic Press, New York City (1982). Also, Durley III (U.S. Pat. No. 4,413,629; issued 1983) disclosed a portable, ultrasonic Doppler device for detecting fetal heartbeat and measuring its rate. The hand-held Doppler fetal heartbeat measurement device (hereafter referred to as a conventional doppler) has since become standard equipment at nearly every obstetrics practice in the United States, because it is a useful, simple and relatively inexpensive device. The conventional doppler consists of essentially two components:(i) a hand-held probe containing one or more transducers or transducer arrays for generating and detecting ultrasonic waves; and (ii) an electronic base unit (hereafter referred to as a base unit) capable of converting the electrical signal from the probe to an audible response meaningful to the human ear. In use, the hand-held probe is held against the abdomen of a woman suspected of being pregnant, with the transducer end of the probe facing in the direction of the suspected fetus. The probe is then activated, resulting in an ultrasonic wave stream (with a typical frequency of 3 MHZ) being directed through the abdominal wall. A portion of this wave stream is reflected back to the probe. If a live fetus is present, the movement of its heart (and of blood through the heart chambers) results in a frequency shift (“Doppler shift”) in the waves reflected from that region. The magnitude and sign of the Doppler shift varies with the instantaneous velocity of the sound-wave-reflecting surface and hence, if this surface is that of the fetal heart, the motion of the heart chambers. An audible signal is generated by the base unit from the varying Doppler shift. The base unit may also display a visual readout, e.g. a digital display, of fetal heart rate.
In a typical pregnancy, the conventional doppler is incapable of reliably detecting the fetal heartbeat until about 12 weeks gestation. This is owing primarily to the low level of ultrasonic energy reflected from the first trimester fetal heart and to the high degree of dampening of that energy (ultrasonic impedance) by the abdominal wall of the mother. In the event of complications, or the observation of a uterus size that does not correlate to the date of the last menstrual period, a physician's only option to determine fetal viability is to order a sonogram with an intravaginal probe. This technique allows early visualization and measurement of fetal cardiac activity. It has significant disadvantages, however, in that it is expensive and often requires the patient to be sent to another facility which is inconvenient and delays verification of fetal viability.
The primary approach to solving this problem has been directed at increasing the signal to noise ratio of the conventional doppler. Lee et al. (U.S. Pat. No. 5,630,418; issued 1997) [“Lee I”] discloses a controller for muting break noise in a conventional doppler. Break noise is generated when the probe is moved across the skin surface causing the probe/skin interface to be momentarily broken. Eliminating break noise increases the signal to noise ratio and makes it easier to identify the fetal heartbeat while the physician is seeking the fetal heart (which involves moving the probe across the abdomen). Lee et al. (U.S. Pat. No. 5,827,969; issued 1998) [“Lee II”] teaches a device that uses an abdominal probe with selective power settings, enabling the user to increase the power of the transmitted ultrasonic energy, which increases the reflected signal from the fetal heart. Another approach has been aimed at improving the signal processing techniques used to distinguish the low level fetal heartbeat component from the background noise. While these approaches have improved the sensitivity of the conventional doppler they are inherently limited by the impedance of the mother's abdominal wall and the distance between the probe and fetus, especially in obese patients.
The fetal heart begins beating at approximately six to seven weeks gestation. Medically, it is desirable to detect and measure fetal heartbeat in the patient's first office visit (typically approximately eight weeks gestation). It is particularly desirable in cases of spotting, cramping, pain or other complications to determine whether fetal heartbeat is present and its nature, as a demonstration of fetal viability and as a means of reducing subsequent risk of miscarriage. Further, it offers early peace of mind for the patient, especially those with a history of miscarriage. Further still, it may lead to earlier detection of ectopic and other abnormal pregnancies, possibly allowing non-invasive treatment options and better preservation of patient fertility. As indicated above, however, present technology, though available in the form of full sonography systems, is expensive and inconvenient. The capital investment in sonography equipment is 100 to 200 times the cost of the conventional doppler that is present in every ob-gyn office, even those in rural areas of the country far from medical centers. As a consequence, the charges to the patient are comparably much more expensive. Furthermore, patients in rural areas usually have to travel to another town or city to have this procedure carried out in those instances where the early detection of fetal heartbeat is imperative. One consequence is that on many occasions where it is deemed to be helpful (and in retrospect would have been very useful) it is simply not done.
Therefore, what is needed is an inexpensive, portable device that is capable of reliably detecting fetal heartbeat and measuring its rate as early as seven weeks gestation.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an inexpensive and convenient method and device for detecting fetal heartbeat and measuring its rate in the first trimester of pregnancy. More particularly, it is the object of the present invention to provide such a method and device capable of detecting and quantifying fetal heartbeat as early as eight weeks gestation for the majority of pregnancies.
The present invention meets its objectives by adapting the conventional doppler. The present inventor has found, through experimentation, that with some modifications to the conventional probe, this new device is highly capable of detecting fetal heartbeat and measuring its rate at seven to eight weeks gestation. Consequently, one embodiment of the method of the present invention is to adapt the probe of the conventional doppler so that it can be used intravaginally. Although there are a number of probe designs for the conventional doppler, all terminate in a blunt, flat region intended to be placed against the outside of the abdomen, and then moved along the outside abdominal wall. Nevertheless, it is possible in many instances, after taking standard steps to ensure an antiseptic surface, to introduce the end of one of the conventional-doppler probes into the vagina and thereby, in many cases, obtain an early detection of the presence and rate of the fetal heartbeat. This is a procedure that has not been previously disclosed or taught.
Although it is possible to use the conventional

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Early-fetal-heartbeat-detection device and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Early-fetal-heartbeat-detection device and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Early-fetal-heartbeat-detection device and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2912587

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.