Autonomous control method and process for an investment...

Data processing: generic control systems or specific application – Specific application – apparatus or process – Product assembly or manufacturing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S146000, C700S117000, C700S116000

Reexamination Certificate

active

06453210

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to industrial control systems. In particular, the invention pertains to control methods for investment casting shell handling systems, and methods of autonomous control of groups of machines through a programmable logic controller.
BACKGROUND OF THE INVENTION
Investment casting systems have recently increased in complexity to fabricate more intricate and complex metal parts. In the past, producing an investment casting required the relatively simple steps of surrounding a wax or foam mold with sand in a gondola into which the molten metal is poured in a sacrificial or molten replacement of the mold. Automation consisted of moving a gondola mounted on a railed conveyor to a particular station at which a particular processing step of the casting within the gondola carrier was completed. Mainly, these steps consisted of pouring sand into the gondola to surround the sacrificial mold and then pouring a metal alloy into the mold. Control systems consisted of operator initiated switching and preset loading operations based upon gondola positioning. Intelligent control was a human operator initiating each machine in sequence based upon known timing constraints.
However, investment casting steps have evolved to be able to produce far more complex parts using a variety of alloys. Today, casting “shells” made up of successive layers of ceramic materials are built up around a sacrificial wax or foam mold. These shells fully encase the mold and functionally replace the bulky gondola and sand supports previously used. Once a suitable shell is created around the mold, molten metal is poured directly into the shell through a shaped cemented into the shell during its fabrication. The sacrificial core is molten or vaporized and the shell is extracted from the newly cast part during the clean-up process.
Building up the successive layers of ceramic material around the mold requires a sequence of repetitive steps of dipping the molds into various mixtures of glue/cement slurries and then surrounding the coated mold with fluidized sand and drying. The duration and environmental conditions of each drying step, in conjunction with the type of sand applied to the specialized slurry coating greatly affects the properties of the final shell created. Therefore, specific “recipes” are designed for each particular casting shell part to achieve each shell's desired properties.
Due to the many variations within recipes, automation of shell manufacturing is complex. Robot manipulators, fluidized barrels or rainfall sanders, temperature controlled ventilation fans, and conveyors carrying wax or foam molds must work in a coordinated effort to make a desired casting shell in accordance with a specified recipe. Furthermore, different types of shells for casting different types of metal parts are often made on the same shell assembly line, utilizing the same machines. In order to automate manufacturing of the various types of shells on one assembly line, “cells” of processing machines must be able to automatically recognize what type of shell has entered the production line and automatically configure their processing steps in accordance with a particular recipe associated with the shell part. Typically, this will entail automatic recognition of the shell part through radio frequency or bar coded tags affixed to the part. Also, multiple conveyors must move in a coordinated effort, sometimes throughout a large facility, to and away from each processing cell.
Previously, during the evolutionary advancement of industrial controls, robot manipulators and other processing machines included relatively simple programmable memory which was preprogrammed to initiate tasks in response to external conveyor sensors. Little or no communication occurred between each machine and overall system level control rudimentary. These machines were therefore mostly autonomous and acted as a master with respect to any connected programmable logic controllers (PLCs). The PLCs were simply programming conduits through which individual robots could be programmed.
In response to the necessity to coordinate robot and machine actions, newer systems have included real-time databases on the factory floor to which machines are connected through PLCs. In these types of “real-time” systems, a processor, typically the CPU in a Personal Computer located on the factory floor, accesses data elements in a resident database and in response issues commands to the machines through the PLCs. In these newer arrangements, machines and manipulators receive their movement instructions through the PLCs, which act as a bi-directional pass-through multiplexer to which multiple robot and machines might be connected.
However, high speed complex processing on a factory floor tends to be less reliable than remote processing away from resident electromagnetic pulse (EMP) interference. Furthermore, factory floor data communications necessitates multiple error correcting protocols and hinders the speed at which data may be transmitted. For example, Allen Bradley's well known Data Highway Plus™ network transmits data at 240 k bits/sec for networks extending to 10,000 feet. This is slow in contrast to the nominal local area networks which transmit data a 10 to 100 Mbits/sec rate. Currently, with the addition of proper shielding, such networks are beginning to be installed directly on the factory floors allowing increased data communications rates between PLCs. However, older, more reliable networks, such as the DH+ are the norm, and the added shielding expense and increased error rates are prohibitive.
For complex investment casting shell handling operations in which dozens of machines, sensors, and conveyors, in dozens of different processing cells must communicate, factory floor networks limit the processing power of the CPU accessing the real-time data from the floor network. Moreover, complex processing in an application server or PC results in limiting factory floor operations by making the distributed PLCs dependent upon real-time commands from a control application running on the server.
From the foregoing, modem casting shell systems require an information topology and method in which complex processing can be removed from the factory floor and commands automatically distributed to PLCs on the factory floor in a predictive manner, and from which sensor and status information can be retrieved and displayed at remote locations. In effect, a need exists for a factory processing system in which distributed PLCs on the factory floor become individual master controllers over machines in associated individual processing cells, and from which a remote industrial control application server may service a plurality of individual master PLCs on a factory floor at the request of an individual PLC.
SUMMARY OF THE INVENTION
It is the object of the present invention to provide a predictive industrial control system in which a computer server can access and process information from local and remote databases and then pass groups of commands to programmable logic controllers on a factory floor upon request.
Another object of the present invention is to provide an autonomous control topology in which groups of commands may be downloaded into programmable logic controllers on the factory floor for controlling connected machines.
A further object of the invention is to provide an industrial control system in which programmable logic controllers on the factory floor act as master controllers for cells of connected machinery.
A still further object of the present invention is to provide a unique control word format or encoding casting shell processing commands.
Another object of the present invention is to provide processing scalability of multiple processing cells in response to increased production activity.
And yet another object of the present invention is to provide distributed processing on an industrial production line through multiple programmable logic controllers.
In summary, the invention is an indus

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Autonomous control method and process for an investment... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Autonomous control method and process for an investment..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Autonomous control method and process for an investment... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2910805

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.