Microphone mounting structure for a sound amplifying...

Electrical audio signal processing systems and devices – Electro-acoustic audio transducer – Housed microphone

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C381S367000, C381S376000

Reexamination Certificate

active

06430298

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a microphone mounting structure, and in particular, a microphone mounting structure which permits easy and reliable conversion of a conventional respirator and/or bubble suit to a sound amplifying respirator and/or bubble suit.
It is known that conventional respirators and/or bubble suits make communications difficult between persons wearing the respirators and/or bubble suits. In particular, the wearer's voice is muffled and difficult to detect over significant distances. This problem is exacerbated when there is background noise, as during firefighting and other similarly hazardous emergency operations. In response to this problem, several attempts have been made to provide sound amplifying respirators and/or masks which facilitate communications among the wearers of the respirators and masks. Examples of such respirators and masks are illustrated by the following U.S. Patents:
PATENT NO.
PATENTEE
5,307,793
Sinclair et al.
5,224,473
Bloomfield
5,159,641
Sopko et al.
5,138,666
Bauer et al.
5,060,308
Bieback
4,537,276
Confer
4,508,936
Ingalls
4,491,699
Walker
4,116,237
Birch
4,072,831
Joscelyn
3,314,424
Berman
3,180,333
Lewis
2,953,129
Bloom et al.
2,950,360
Duncan
Although the above exemplary respirators and masks are generally effective, there are several disadvantages associated therewith. The Joscelyn patent, for example, teaches a mounting structure for the microphone which is integrally formed with the mask. Thus, retro-fitting of existing masks with the arrangement of Joscelyn would be very difficult and time-consuming.
Still other disadvantages are associated with one or several ones of the above exemplary respirators and masks. These disadvantages include significant reductions in amplification quality resulting in distortion of the amplified voice; the need for expensive and excessively complex circuitry or manufacturing techniques; serious distortion if the mask is frequently bumped or otherwise subject to frequent quick movements; incompatibility with some irregularly shaped masks and smaller masks, such as filter masks; mounting of the microphone assembly to the mask using a threaded connection which may become loosened during extended use, such loosening of the threaded connection possibly compromising the air-tightness of the mask and thereby posing an extreme danger to the user of the masks in hazardous environments; and difficulty in removing the microphone temporarily from the mask for purposes of cleaning the mask.
SUMMARY OF THE INVENTION
It is a primary object of the present invention to overcome the deficiencies of the prior art by providing a microphone mounting structure which permits easy and reliable conversion of a conventional respirator and/or bubble suit into a sound amplifying respirator and/or bubble suit.
Another object of the present invention is to provide a small, light-weight microphone mounting structure which is compatible with almost any respirator mask, including paper filter masks, and positively locks thereto to prevent inadvertent loosening of the mounting structure or leakage through the mask.
Yet another object of the present invention is to provide a microphone mounting structure which does not require a pre-existing mounting feature or connector on the respirator mask or bubble suit, and instead breaches the mask or bubble suit and then re-establishes the air-tight characteristics thereof.
Still another object of the present invention is to provide a microphone mounting structure which does not require complex or expensive circuitry, nor does it require complex signal transmission means such as infra-red transmitters and receivers.
A further object of the present invention is to provide a microphone mounting structure which provides direct electrical connections between a microphone inside a respirator mask and/or bubble suit, and amplifying circuitry so as to provide enhanced voice signal quality.
Another object of the present invention is to provide a microphone mounting structure with an amplification circuit that provides maximum voice signal quality for voices detected within the mask and/or bubble suit by the microphone.
To achieve these and other objects, the present invention comprises a microphone mounting structure for mounting a microphone to a respiratory mask and/or bubble suit through a hole therein. The microphone mounting structure is thus able to convert virtually any conventional respiratory mask or bubble suit into a sound amplifying respiratory mask or bubble suit.
The microphone mounting structure comprises a tubular plug, a sleeve, and a tubular locking mechanism. The tubular plug has a closed end, an open end and a central portion disposed therebetween. The closed end of the tubular plug has a larger outer diameter than the outer diameter of the central portion. The open end has a plurality of resilient fingers defined by slots in the open end, the resilient fingers having Finger tips which project radially out with respect to the tubular plug. The tubular plug further comprises electrical contact means for electrically connecting an interior of the tubular plug with an exterior of the tubular plug.
The sleeve receives the microphone and has an outer diameter substantially equal to the inner diameter of the tubular plug so that the sleeve fits coaxially inside the tubular plug. Preferably, the sleeve has an internal diameter which matches the outer diameter of the microphone so that the microphone is frictionally retained within the sleeve. The sleeve, however, is preferably longer than the central portion and open end of the tubular plug. In this way, a portion of the sleeve projects out from the tubular plug and this, in turn, facilitates removal of the sleeve from within the tubular plug using, for example, needle-nosed pliers.
A microphone cover may also be provided which fits snugly over the projecting sleeve portion and protects the microphone from moisture, dust, and the like. The microphone cover is preferably arranged only over the projecting sleeve portion so that the resilient fingers of the tubular plug remain exposed for easy inspection.
The tubular locking mechanism cooperates with the tubular plug to lock the microphone mounting structure to the respiratory mask. In particular, the tubular locking mechanism includes an inner diameter substantially equal to the outer diameter of the central portion and a longitudinal length only slightly shorter than the combination of the central portion and the open end. By providing these dimensions, the tubular locking mechanism is slidable over the resilient fingers after the tubular plug has been inserted through the hole in the respiratory mask. Doing so, in turn, forces the resilient fingers radially inwardly until the entire tubular locking mechanism has passed over the finger tips of the resilient fingers, at which time the finger tips snap radially outwardly to thereby lock the microphone mounting structure to the respiratory mask. The respiratory Task, consequently, remains sandwiched and locked between the front end of the tubular locking mechanism and the closed end of the tubular plug.
The microphone mounting structure of the present invention preferably comprises three electrical contacts extending radially through the sleeve and arranged for electrical connection to the electrical contact means in the tubular plug. In addition, three electrical wires are provided for electrically connecting the electrical contacts to the microphone.
The microphone mounting structure preferably also comprises an internal alignment slot extending longitudinally along the central portion and open end of the tubular plug, and an external alignment tab which projects radially out from the sleeve for alignment with the internal alignment slot of the tubular plug. The alignment slot and tab are arranged such that, whenever the external alignment tab is received in the internal alignment slot, the external alignment tab prevents axial rotation of the sleeve with respect to the tubular plug. This arrang

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microphone mounting structure for a sound amplifying... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microphone mounting structure for a sound amplifying..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microphone mounting structure for a sound amplifying... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2905927

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.