Method of preparing xenograft heart valves

Chemistry: molecular biology and microbiology – Differentiated tissue or organ other than blood – per se – or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S002100, C623S002420, C435S325000

Reexamination Certificate

active

06383732

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of treatment of defective human heart valves, and in particular, to replacement and repair of defective or damaged human heart valves using a substantially immunologically compatible heart valve from a non-human animal.
BACKGROUND OF THE INVENTION
Heart valves are composed of fibrochondrocytes and an extracellular matrix of collagen and elastic fibers, as well as a variety of proteoglycans. Various synthetic and tissue based materials (the latter either from the recipient organism or from a different organism within the same species) have been used for forming heart valve replacements. Each have their advantages and disadvantages.
In the case of synthetic heart valves, it may be possible to modify advantageously the properties of the heart valves by altering the monomers and/or the reaction conditions of the synthetic polymers. Synthetic heart valves may be associated with thromboembolism and mechanical failure, however. See U.S. Pat. No. 4,755,593.
Tissue based heart valves may demonstrate superior blood contacting properties relative to their synthetic counterparts. Tissue based heart valves also may be associated with inferior in vivo stability, however. See U.S. Pat. No. 4,755,593.
Pericardial xenograft tissue valves have been introduced as alternatives to the synthetic and the tissue based valves described above. See Ionescu, M. I. et al., Heart Valve Replacement With The Ionescu-Shiley Pericardial Xenograft, J. Thorac. Cardiovas. Surg. 73; 31-42 (1977). Such valves may continue to have calcification and durability problems, however. See Morse, D, ed.
Guide To Prosthetic Heart Valves
, Springer-Verlag, New York, 225-232 (1985).
Accordingly, there is a need for mechanically durable, flexible heart valves replacements which are capable of contacting the blood and are stable in vivo.
Much of the structure and many of the properties of original heart valves may be retained in transplants through use of heterograft or xenograft materials, that is, heart valve from a different species than the graft recipient. For example, tendons or ligaments from cows or other animals are covered with a synthetic mesh and transplanted into a heterologous host in U.S. Pat. No. 4,400,833. Flat tissues such as pig pericardia are also disclosed as being suitable for heterologous transplantation in U.S. Pat. No. 4,400,833. Bovine peritoneum fabricated into a biomaterial suitable for prosthetic heart valves, vascular grafts, burn and other wound dressings is disclosed in U.S. Pat. No. 4,755,593. Bovine, ovine, or porcine blood vessel xenografts are disclosed in WO 84/03036. However, none of these disclosures describe the use of a xenograft for heart valve replacement.
Once implanted in an individual, a xenograft provokes immunogenic reactions such as chronic and hyperacute rejection of the xenograft. The term “chronic rejection”, as used herein, refers to an immunological reaction in an individual against a xenograft being implanted into the individual. Typically, chronic rejection is mediated by the interaction of IgG natural antibodies in the serum of the individual receiving the xenograft and carbohydrate moieties expressed on cells, and/or cellular matrices and/or extracellular components of the xenograft. For example, transplantation of heart valve xenografts from nonprimate mammals (e.g., porcine or bovine origin) into humans is primarily prevented by the interaction between the IgG natural anti-Gal antibody present in the serum of humans with the carbohydrate structure Gal&agr;1-3Gal&bgr;1-4G1cNAc-R (&agr;-galactosyl or &agr;-gal epitope) expressed in the xenograft. K. R. Stone et al., Porcine and bovine cartilage transplants in cynomolgus monkey: I. A model for chronic xenograft rejection, 63 Transplantation 640-645 (1997); U. Galili et al., Porcine and bovine cartilage transplants in cynomolgus monkey: II. Changes in anti-Gal response during chronic rejection, 63 Transplantation 646-651 (1997). In chronic rejection, the immune system typically responds within one to two weeks of implantation of the xenograft.
In contrast with “chronic rejection”, “hyperacute rejection” as used herein, refers to the immunological reaction in an individual against a xenograft being implanted into the individual, where the rejection is typically mediated by the interaction of IgM natural antibodies in the serum of the individual receiving the xenograft and carbohydrate moieties expressed on cells. This interaction activates the complement system, causing lysis of the vascular bed and stoppage of blood flow in the receiving individual within minutes to two to three hours.
The term “extracellular components”, as used herein, refers to any extracellular water, collagen and elastic fibers, proteoglycans, fibronectin, elastin, and other glycoproteins, which are present in heart valve.
Xenograft materials may be chemically treated to reduce immunogenicity prior to implantation into a recipient. For example, glutaraldehyde is used to cross-link or “tan” xenograft tissue in order to reduce its antigenicity, as described in detail in U.S. Pat. No. 4,755,593. Other agents such as aliphatic and aromatic diamine compounds may provide additional crosslinking through the side chain carboxyl groups of aspartic and glutamic acid residues of the collagen polypeptide. Glutaraldehyde and diamine tanning also increases the stability of the xenograft tissue.
Xenograft tissues may also be subjected to various physical treatments in preparation for implantation. For example, U.S. Pat. No. 4,755,593 discloses subjecting xenograft tissue to mechanical strain by stretching to produce a thinner and stiffer biomaterial for grafting. Tissue for allograft transplantation is commonly cryopreserved to optimize cell viability during storage, as disclosed, for example, in U.S. Pat. No. 5,071,741; U.S. Pat. No. 5,131,850; U.S. Pat. No. 5,160,313; and U.S. Pat. No. 5,171,660. U.S. Pat. No. 5,071,741 discloses that freezing tissues causes mechanical injuries to cells therein because of extracellular or intracellular ice crystal formation and osmotic dehydration.
SUMMARY OF THE INVENTION
The present invention provides a substantially non-immunogenic heart valve xenograft for implantation into a human in need of heart valve repair or replacement. The invention further provides methods for processing xenogeneic heart valve with reduced immunogenicity but with substantially native elasticity and load-bearing capabilities for xenografting into humans.
As used herein, the term “xenograft” is synonymous with the term “heterograft” and refers to a graft transferred from an animal of one species to one of another species. Stedman's Medical Dictionary, Williams & Wilkins, Baltimore, Md. (1995).
As used herein, the term “xenogeneic”, as in, for example, xenogeneic heart valve, refers to heart valve transferred from an animal of one species to one of another species. Id.
The methods of the invention, include, alone or in combination, treatment with radiation, one or more cycles of freezing and thawing, treatment with a chemical cross-linking agent, treatment with alcohol or ozonation, and sterilization In addition to or in lieu of these methods, the methods of the invention include, alone or in combination, in any order, a cellular disruption treatment, glycosidase digestion of carbohydrate moieties of the xenograft, or treatment with proteoglycan-depleting factors. Optionally, the xenograft can be exposed to an aldehyde for further crosslinking. After one or more of the above-described processing steps, the methods of the invention provide a xenograft having substantially the same mechanical properties as a native heart valve.
As used herein, the term “cellular disruption” as in, for example, cellular disruption treatment, refers to a treatment for killing cells.
In one embodiment, the invention provides an article of manufacture comprising a substantially non-immunogenic heart valve xenograft for implantation into a human.
In another embodiment, the invention provides a method of pre

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of preparing xenograft heart valves does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of preparing xenograft heart valves, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of preparing xenograft heart valves will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2904156

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.