Electrode and method of making same

Electric heating – Metal heating – Weld rod structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S145310, C219S145230, C219S137200, C219S146100, C219S146300

Reexamination Certificate

active

06426483

ABSTRACT:

The present invention relates to the art of electric arc welding of the type where a welding wire is directed toward a workpiece and an electrical current is passed through the welding wire to the workpiece to create an arc welding process melting the end of the advancing wire and depositing the melted metal onto the workpiece and more particularly to an improved welding wire for use in this arc welding process and the method of making this improved welding wire.
INCORPORATION BY REFERENCE
U.S. patent application Ser. No. 09/024,392 filed Feb. 17, 1998 is incorporated by reference herein to provide information on solid metal welding wire which has distinct quantized segments that facilitate superior droplet transfer.
BACKGROUND OF INVENTION
Electric arc welding of the type to which the present invention is directed involves the use of a welding wire normally stored upon a spool or reel, which wire is fed from the supply reel toward a workpiece through a tubular connector so that current can be directed through the connector to the advancing welding wire and through the welding wire to the workpiece. The electric current heats the advancing welding wire by I
2
R heating so that the end of the welding wire is melted and deposited onto the workpiece by transfer through the arc or by other electrical and mechanical phenomenon. Thus, the advancing wire conducts the welding current which melts the wire for deposition of the molten metal from the end of the wire onto the workpiece. Through the years there have been substantial improvements in the welding wire, which is normally a solid wire having a predetermined diameter and a surface lubricant so the wire can be advanced at a controlled feed speed for melting and depositing the molten metal onto the workpiece. Shielding gas can be used around the advancing welding wire. A solid wire provides superior arc welding properties; however, it is often necessary to provide the welding wire with flux and alloying metal ingredients to tailor the molten metal deposition to the desired metallurgical demands of the welding process. To accomplish these added features, it has become common practice to form the wire as a steel sheath surrounding a center core formed from fluxing ingredients and/or alloying powder. Thus, there are many cored welding wires. By using a cored wire concept, the flux can be evenly distributed along the length of the advancing welding wire. When producing the metal sheath from a somewhat standard steel, the core can include alloying powder. These metal cored electrodes employ the powdered metal in the core to tailor the deposited metal for a given welding process. There is a substantial advantage in some welding processes to use the flux cored or metal cored wire. Indeed, there are instances when a combination flux and alloy powder are used in the core of the wire. The advantages of these cored wires or electrodes for arc welding wire are somewhat offset by the fact that a solid metal wire normally produces superior arc welding. The metal is at the center of the arc and in a sheath surrounding the arc, as in a flux cored or metal cored wire. Both a solid metal wire and a metal cored wire have a substantially constant resistance per length of wire, which resistance controls the arc welding process especially in constant voltage arc welding procedures. In some arc welding processes, it is desirable to have an increased resistance per length to optimize the welding process, but such a modification affects the amount of metal being deposited. The solid metal wire and the cored metal wire satisfy the demands of the electric arc welding industry; however, they have disadvantages caused by the constraints of their physical characteristics which in some instances does not allow optimum electrical characteristics of the welding process.
THE INVENTION
The present invention is a solid metal welding wire which has distinct quantized segments that facilitate superior droplet transfer. The segments each have essentially the same volume. This use of a solid welding wire with quantized distinct segments has been found to perform well with conventional constant voltage welding sources. The current or heating is controlled by the effective resistance or resistance per length, which resistance is controlled by varying the cross sectional area of each segment along the longitudinal length of the segment. This type of solid wire has the advantage that it is easily made by simply processing existing solid MIG wire in a manner to produce a series of spaced indentations creating a quantized segment along the length of the wire. Such indentations can be done at the manufacturing facility making the solid wire or in a device adjacent to the wire feeder at the welding station, which is often a robotic welding station. By using a solid welding wire having quantized spaced segments along the longitudinal length of the wire, pulsed arc welding can be coordinated so that the pulse frequency and the wire feed rate provide a quantized segment at the time of each current pulse. This coordination stabilizes the pulsed mode transfer so that a single droplet detachment is achieved with each current pulse to optimize the welding characteristics in ways well known in the welding art. The electrode is heated by current passing through the wire. The resistance of the wire has a direct effect on the heating. Thus, by varying the cross section area of the solid wire, the effective resistance or resistance per length is increased in regions having a smaller cross section area and the current is decreased when a constant voltage is applied to the welding process. This adjustment of resistance controls the heating of the advancing welding wire in a manner determined by the cross sectional area and length of each quantized segment of the wire. By using the present invention, the resistance per length of wire is higher than with a solid wire with a uniform cross sectional area. This is an advantage at high deposition rates because the heat input into the workpiece per unit weight of wire can be reduced to extend the stable range of the constant voltage process. By reducing the cross sectional area of the metal along the length of the wire, the resistance per length of the wire can be modified in a tailored fashion. The shape of the indentations of each quantized segment of the solid wire electrode can be in the form in a variety of other configurations which causes the cross sectional area to reduce in a certain area of each quantized segment and, thus, vary the resistance of the solid wire along the length of each quantized segment. The solid metal wire can be provided with fluxing, filling and/or alloying agents, such that the agents are carried within the indentations without affecting the outer diameter of the metal wire. Electrical contact is maintained at the outer portions of the quantized segments. By adjusting the relative length of the quantized segments and the volume of the indentation in each quantized segment, the desired amount of fluxing or alloying agents can be provided per length of the advancing solid metal welding wire. Such solid wire has the advantages of standard solid wire with the added advantage of a flux cored or metal cored wire. To protect the fluxing, filling or alloying agents in the space created by the indentations, another aspect of the invention includes the use of a metal sheath around the metal electrode. This sheath can be steel or copper to enhance electrical conduction from the electrical contact in the welding equipment to the advancing solid metal welding wire. Thus, moisture contamination and physical damage to the fluxing , filling or alloying agents is inhibited. The sheath or jacket can be mechanically wrapped around the wire having spaced quantized segments by using a standard spiral wrapping technique. The sheath or jacket can be placed around the wire and drawn or rolled with the wire, using techniques similar to those employed in conventional cored wired manufacturing techniques. The sheath or jacket can also be prov

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrode and method of making same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrode and method of making same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrode and method of making same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2902480

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.