Compositions for rapid and non-irritating transdermal...

Drug – bio-affecting and body treating compositions – Plant material or plant extract of undetermined constitution...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S449000, C514S946000, C514S947000

Reexamination Certificate

active

06444234

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to transdermal delivery of active agents, including pharmaceuticals, cosmetics, nutrients, and the like, across the skin barrier of humans or other animals and to a method for developing new transdermal delivery systems for any particular polar or non-polar active agent of small or large molecular size, which delivery systems are capable of rapidly delivering the active agent to a targeted location systemically or locally.
BACKGROUND OF THE INVENTION
The pharmaceutical industry is actively seeking to develop new and improved modes of drug delivery to enhance the effectiveness of particular drugs, including, targeting the drug to the intended site, reducing dosage, decreasing toxicity, and the like. Major efforts are underway in molecule stabilization for parenteral applications, extended release modalities for enteral drugs and photoactivated chemotherapeutic molecules, for example. Delivery of medications via transdermal drug delivery (TDD) systems (patches) has also seen dramatic developments. For example, it is now generally agreed that chemical modification of the barrier properties of the skin is a safe and effective method to enhance penetration of medicaments (Ref. 1). However, to some extent it seems that this mode of delivery has reached its technological limits.
The present inventors have analyzed the TDD systems and have been able to identify certain limiting factors. These include, for example, limitations to compounds which are
lipophilic medicaments;
medicaments with an effective therapeutic dose of ≦1 mg per day;
medicaments having a melting point below about 150° C.;
medicaments having a molecular weight of from less than about 300 to about 500 Daltons (the larger the molecule, the less is the amount deliverable via the stratum corneum);
molecules which do not elicit a rapidly cascading immune response when transmigrating the skin.
With regard to the molecular weight limitation, currently commercially available TDD systems deliver molecules with molecular weights less than about 340 D and in amounts generally less than about 1.0 mg per 24 hours.
Additionally, candidate medicaments should also, preferably, be soluble in ethanol and/or isopropanol and/or glycols or dimethyl sulfoxide (DMSO) and should not be chemically altered by solubilization. Another potentially limiting factor is for compounds which can have efficacy at relatively small doses introduced systemically via the capillary net of the dermis. Main limiting factors thus include molecule size and irritation potential of the medicament plus solvent(s) and other components.
The inventors have also analyzed the chemistry and chemical structures of active ingredients and carriers of transdermal delivery systems and have found other limiting factors leading to the limited success of transdermal drug delivery. Most typically it has been observed that these systems have not been widely acceptable because the drug carriers chemically bond with the medicament resulting in non-bioavailable compounds transmigrating the skin; or/and the carrier, e.g., DMSO, reduces the medicament yielding a non-bioavailable or non-bio-equivalent compound or creates toxic by-products of transmigration.
Only about 1% or less of known medicaments would not be excluded for administration by a TDD system based on the above limiting factors. Still further, TDD systems currently available are usually subject to broadly varying results as a function of the circulation efficiency of the patient. Age, size and weight of the patient all impact how efficiently these systems perform. For most TDD systems there is virtually no drug penetration for the first hour after application and often 24 to 48 hours are required to achieve a therapeutic level.
The anatomy and physiology of the integument was analyzed to understand the complex protective mechanism of physical, biochemical and bio-electrical gradients which work to minimize the penetration of foreign substances and sensitize the organism to react more rapidly and aggressively to future exposures. As a result of this analysis it is postulated that:
The primary pathway of transdermally delivered drugs is paracellular, i.e., around the cells, then through the elastin glue.
The glue-like compound, elastin, composed of collagen and hyaluronic acid and other lipids, which occupies the interstices between the cells of the top-most layer of the skin (i.e., the epidermis, including, e.g., stratum corneum (SC), lucidum, granulosum, spinosum) must be dissolved (or otherwise disrupted) in order for a medicament or other active agent, dissolved in a solvent, to transmigrate through viable skin (VS) to the subcutaneous tissues where the cutaneous plexi of the capillary net can be reached and/or deeper penetration achieved (Ref. 2). When the elastin is dissolved, other agents may then transmigrate the outer layers, so the body immediately begins to attempt to repair the damage caused by the dissolution.
Skin penetration enhancers (SPE) which delipidize can reduce the barrier capacity of the SC as a function of species of enhancer and its concentration. Permeability may often be adjusted by modifying the HLB of the enhancer (Ref. 3).
Capillary circulation acts as a sink for the medicament, thus maintaining a steep chemical potential gradient across the skin (Ref. 4).
Diffusivity of a drug molecule is dependent on properties of both the medicament and the medium (carrier) The diffusivity in liquid media, in general, tends to decrease with increased molecular volume (Ref. 5).
The rate of skin penetration is a function of (1) the Diffusion Coefficient, (2) the barrier partitioning tendencies, (3) binding affinities, and (4) the rate of metabolism of the medicament by the skin (Ref. 6). The Diffusion Coefficient of the medicament is influenced by (1) molecular weight, (2) molecular structure, (3) additives, (4) rate of metabolism of the medicament by the skin. Diffusion is also dependent on the carrier, with diffusivity decreasing with increased molecular volume.
An optimum HLB is required for a medicament to penetrate efficiently. The optimum HLB may be predicted by plotting the log (Permeability Coefficient) vs. log (Oil and Water Partition Coefficient) of the medicament for the SC and the VS (Ref. 4).
Highly lipophilic drugs bind readily in the VS and, therefore, dissolution into the blood is minimal (Ref. 6). Therefore, highly lipophilic drugs must be shielded to inhibit such binding.
Skin metabolizes drugs effectively, so metabolism issues in the skin, such as, enzyme saturation and/or inhibition, medicament/metabolite fluxes (e.g., how rapidly and completely does the drug metabolize to a different form) should be taken into account.
Un-ionized species of medicaments transmigrate more readily (Ref. 4). Generally, un-ionized species are two orders of magnitude more permeable than their ionized form.
The Hildebrand Solubility Parameter (HSP) is useful for predicting the mutual solubility and compatibility of medicaments, SPEs, and polymers and for optimizing skin permeability (Ref. 7). The HSP describes the attractive forces between molecules and is defined as the square root of the Cohesive Energy Density (Ref. 8). The HSP spans a range where the low value is associated with lipophilic compounds and a high value with hydrophilic compounds. The solubility parameter can be further partitioned into polar, non-polar, dispersive, and hydrogen bonding components which are useful to predict molecular interactions between compounds (Ref. 9). The solubility parameter or Cohesive Energy Density is synonymous with lipophilic/hydrophilic properties (Ref. 4). Dipole moment is also an expression of the Cohesive Energy Density.
Transient increases in cutaneous blood flows may result in increased systemic absorption of the drug from the depot of the TDD (Ref. 5).
Furthermore, cellular biological issues were reviewed in order to identify and categorize membrane and organelle functions, both in the integument and in other tissues, which might be subject to variations which m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Compositions for rapid and non-irritating transdermal... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Compositions for rapid and non-irritating transdermal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Compositions for rapid and non-irritating transdermal... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2899272

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.