Low volume ablatable processless imaging member and method...

Stock material or miscellaneous articles – Structurally defined web or sheet – Discontinuous or differential coating – impregnation or bond

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S913000

Reexamination Certificate

active

06447884

ABSTRACT:

FIELD OF THE INVENTION
This invention relates in general to lithographic imaging members suitable for on- or off-press imaging, and particularly to waterless imaging members that require no wet processing or wiping after imaging. This invention also relates to a method of imaging such imaging member using for example digital means, and to a method of printing with the imaged members.
BACKGROUND OF THE INVENTION
Very common lithographic printing plates include a metal or polymeric support having thereon an imaging layer that is sensitive to visible or UV light. Both positive- and negative-working printing plates can be prepared in this fashion. After exposure to a light source, and possibly to a heat source, either imaged or non-imaged areas are removed using wet processing chemistries.
Thermally sensitive printing plates are becoming more common and are available at least from Kodak Polychrome Graphics. Such imaging members include an imaging layer comprising a mixture of dissolvable polymers and an infrared radiation-absorbing compound. While these imaging members can be imaged using digital means (such as lasers) and can be utilized in what is known as “computer-to-press” imaging systems, they still require post-imaging wet processing using alkaline developer solutions.
Dry planography or waterless printing is well known in the art of lithographic offset printing and has several advantages over conventional offset printing. Dry planography is particularly advantageous for short run and on-press applications. It simplifies press design by eliminating the fountain solution and aqueous delivery train. Careful ink water balance is unnecessary, thus reducing rollup time and material waste.
An unexposed waterless printing plate typically comprises a layer of ink repellent material over a layer of ink accepting material or an ink-accepting surface. Because of their low surface energies and their ability to swell in the long-chain alkane solvents used in printing inks, silicone rubbers, such as poly(dimethylsiloxane) (identified herein as “PDMS”) and other derivatives of poly(siloxanes), have long been recognized as preferred waterless-ink repelling materials. Preparation of the printing plates involves the imagewise removal of the ink repellent silicone rubber to expose the underlying ink accepting material or surface.
Various methods of removing the silicone rubber layer have been developed. Imaging of dry planographic printing plates with infrared lasers has been described in Canadian Patent 1,050,805 (Eames) and by Nechiporenko and Markova, “Advances in Printing Science and Technology,”
Proceedings of the
15
th
International Conference of Printing Research Institutes
, June 1979, Pentech Press, London, pp. 139-148. The silicone rubber layer is coated over a heat-absorbing layer containing an infrared absorbing material in nitrocellulose. Imagewise exposure with an infrared laser partially disrupts the heat-absorbing layer, allowing it and the overlying silicone layer to be removed from the exposed regions with a solvent.
Infrared imaging of printing plates with “ablatable” layers has also been described in U.S. Pat. No. 4,718,340 (Love III), WO 92/07716 (Landsman), WO 94/18005 (Verburgh et al), U.S. Pat. No. 5,379,698 (Nowak et al), U.S. Pat. No. 5,310,869 (Lewis), U.S. Pat. No. 5,339,737 (Lewis et al), U.S. Pat. No. 5,385,092 (Lewis et al), U.S. Pat. No. 5,351,617 (Williams), U.S. Pat. No. 5,353,705 (Lewis et al) and U.S. Pat. No. 5,487,338 (Lewis). These documents describe the use of direct digital imaging on-press or a platesetter.
In each of these methods, mechanical wiping or washing with liquids is required to remove the silicone rubber debris clinging to the plate after exposure. This problem arises because of the conflicting needs to have wear-resistant silicone layers for long press runs while maintaining the ease of layer removal during thermal imaging. Wiping has several drawbacks. It is difficult to reproducibly remove all stray material with automated cleaning stations. Moreover, wiping can scratch or abrade the printing plate.
A truly processless printing plate, that is one that does not require a separate processing step to remove the silicone rubber debris after imaging, would have several advantages. The post-imaging development or wiping step would be eliminated, simplifying the process for preparing the printing plate. In addition, any scratching or abrading of the plate surface caused by development would be eliminated. If desired, the plate could be exposed on the printing press, eliminating any potential damage to the plate caused by handling and mounting on the press after imaging.
There are three key requirements for an ink repellent polymer to be useful for a thermally imageable, processless printing plate that is imaged using ablation. The ink repellent polymer must form a solid film at room temperature to resist damage from the press. It also must release ink, and must be easily removed by the imaging step alone or by the normal action of the press after imaging.
Copending U.S. Ser. No. 08/749,050 (noted above) discloses a class of silicone copolymers that exhibit these desirable attributes. The plates prepared using those copolymers can be imaged and used to print many thousands of impressions. Unfortunately such printing plates still suffer from the conflicting need to be durable on press but readily thermally imaged without the need for wiping or washing. Optimum exposure for ablation plates is therefore relatively high, leading to-undesirable system costs in power and time.
A need exists in the industry for a thermally imageable processless and waterless imaging member in which the ink repellent layer is a polymer that is wear resistant and easily ablatable during thermal imaging with a low volume of residual debris.
SUMMARY OF THE INVENTION
The problems noted above have been overcome with a thermal imaging member comprising an ink-accepting support having thereon:
(a) an ink-repellant, thermally sensitive imaging layer that comprises a photothermal conversion material and a thermally sensitive copolymer comprising one or more silicone segments and one or more thermally sensitive “hard” segments, the silicone segments comprising from about 50 to about 99 weight % of the copolymer, the imaging layer being capable of becoming ink-accepting upon exposure to thermal energy, and
(b) an ink-repellant surface layer that is swellable in waterless ink solvents.
This invention also provide a method of imaging comprising:
A) providing the imaging member described above, and
B) imagewise ablating the surface layer of the imaging member using infrared radiation to provide a surface image.
Further, this invention provides a method of printing comprising after the step A and B noted above:
C) inking the surface image and imagewise transferring the ink to a receiving material.
The imaging members of this invention provide several advantages. They require relatively low thermal exposure during imaging. Furthermore, a much lower volume of polymer material needs to be removed and collected upon imaging. As a result, the imaging method does not require a wiping step or washing with liquids. Thus, the imaging members can be directly imaged using digital information supplied for example using a laser. They have high writing sensitivity, high image quality, short roll up time and long run length.
The particular imaging layer includes a thermally sensitive copolymer having silicone segments and thermally sensitive “hard” segments. These “hard” segments provide physical integrity and thermal sensitivity while the silicone segments provide ink releaseability. The balancing of relative amounts of these segments provides all of the desired properties for the imaging layer.
The surface layer is highly durable, but thin so that there is limited debris from the imaging process.


REFERENCES:
patent: 4718340 (1988-01-01), Love, III
patent: 5310869 (1994-05-01), Lewis et al.
patent: 5339737 (1994-08-01), Lewis et al.
patent: 5351617 (1994-10-01), Williams et al.
patent: 535370

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low volume ablatable processless imaging member and method... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low volume ablatable processless imaging member and method..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low volume ablatable processless imaging member and method... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2897347

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.