Supported organometallic catalysts and their use in olefin...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S129000, C526S130000, C526S170000, C526S178000, C526S183000, C526S195000, C526S196000, C526S335000, C526S346000, C526S348000, C526S348200, C526S351000, C526S352000, C526S901000, C526S943000, C502S103000, C502S104000, C502S117000, C502S152000, C502S153000, C502S202000, C502S232000, C502S118000

Reexamination Certificate

active

06395847

ABSTRACT:

TECHNICAL FIELD
This invention relates to catalyst compositions useful for polymerization reactions of olefinically unsaturated monomers. The invention is particularly useful in coordination polymerization processes that utilize supported catalyst compounds such as for slurry or gas phase polymerization of olefinically unsaturated monomers. The catalyst compositions comprise metal cation catalyst components, anionic cocatalyst components and particulate supports where the anionic cocatalyst is chemically bound to the supports.
BACKGROUND OF THE INVENTION
Coordination polymerization of olefinically unsaturated monomers is well known and has led to the great proliferation in modern society of elastomeric and plastic compositions of matter, such as polyethylene, polypropylene, and ethylene propylene rubber. Catalyst compounds with bulky ligand-containing transition metal components are now well-known in the art. Examples include cyclopentadienyl ligand containing transition metal compounds (e.g., metallocenes), bisamido and bisimido ligand containing transition metal compounds, as well as other transition metal compounds that are stabilized for polymerization reactions by structural inclusion of bulky ligands. Cocatalyst compounds containing, or capable of providing, non-coordinating anions, see for example U.S. Pat. Nos. 5,198,401, 5,427,991, and 5,643,847, can be effectively used to stabilize the transition metal cations and maintain them in cationic form suitable for oligomerization and polymerization of olefins. These references describe protonation of metallocene compounds by anion precursors to form stable ionic catalysts; the latter two specifically teaching the use of anionic complexes directly bound to supports through chemical linkages. See also U.S. Pat. No. 5,939,347 which addresses protonating or abstracting cocatalyst activators bound to silica. All documents are incorporated by reference for their respective teachings as to anionic complexes, compounds and description of support materials.
Immobilized Lewis acid catalysts suitable for carbocationic polymerization are described in U.S. Pat. No. 5,288,677. The Group III A Lewis acids of the invention are said to have the general formula R
n
MX
3-n
where M is a Group III A metal, R is a monovalent hydrocarbon radical consisting of C
1
to C
12
alkyl, aryl, alkylaryl, arylalkyl and cycloalkyl radicals, n=0-3, and X is halogen. Listed Lewis acids include aluminum trichloride, trialkyl aluminums, and alkylaluminum halides. Immobilization is accomplished by reacting the invention Lewis acids with hydroxyl, halide, amine, alkoxy, secondary alkyl amines, and others, where the groups are structurally incorporated in a polymeric chain.
Industrial efficiencies and economics are significantly affected by catalyst activities, or productivities, where such is represented by the grams of polymer produced per gram of catalyst. Means of improving the use of supported catalysts is an important objective in the field of olefin polymerization, particularly for effective industrial use of such catalysts.
INVENTION DISCLOSURE
This invention is directed to solving the needs expressed above, and others as discussed below, and to a method for preparing an organometallic catalyst composition characterized by comprising a support material having covalently bound to the surface or surfaces thereof, directly through functional groups of the support material, a compatible anion that is also ionically bound to a catalytically active transition metal cation complex. Thus the invention specifically relates to olefin polymerization catalyst compositions prepared by a process comprising a) combining nucleophilic group-containing particulate support material with an arylboron or arylaluminum Lewis acid compound in the presence of a Lewis base compound and b) treating the product of a) with a trialkylaluminum compound before c) combining said product with a transition metal precursor compound capable of activation for olefin polymerization by said product a). Additionally the invention includes a polymerization process comprising contacting one or more monomers polymerizable by coordination or carbocationic polymerization under conventionally suitable polymerization conditions with the catalyst composition prepared by the invention process.
DETAILED DESCRIPTION AND EXAMPLES OF THE INVENTION
The catalyst compositions prepared by the invention process described above may be generically represented by the chemical formula
[L
n
L′
m
M′R′]
+
[LA—T—R″—]

,  (1)
where [L
n
L′
m
M′R′]
+
is the catalytically active metal cation and [LA—T—R′—]

is a support bound compatible anion. More specifically in this formula, L
n
is one or more bulky ligands (n equals d
0
−i, where i equals 1-3 and d
0
is the highest oxidation state of M′) covalently bound to M′, L′
m
is a neutral, non-oxidizing ligand having a dative bond to M′ (typically m equals 0 to 3), M′ is a Group 3, 4, 5, 6, 8, 9, 10 or 11 metal, R′ is a ligand having a &sgr; bond to M′ into which a polymerizable monomer or macromonomer can insert for coordination polymerization. LA is a Lewis acid that is capable of forming the anionic activator, T is a Group 14-16 heteroatom (non-carbon atom), and R″— is a metal/metalloid or polymeric substrate of the support material. See additionally the descriptions of U.S. Pat. Nos. 5,427,991 and 5,643,847.
The supports of the invention include any metal/metalloid oxides having surface hydroxyl groups exhibiting a pK
a
equal to or less than that observed for amorphous silica, i.e., pK
a
less than or equal to about 11. In forming the invention covalently bound anionic activator by a preferred method LA is selected so as to be capable of forming a dative complex with a silanol group (which acts as a Lewis base) thus forming a formally dipolar (zwitterionic) Bronsted acid structure bound to the metal/metalloid of the metal oxide support. Accordingly any of the conventionally known silica support materials that retain hydroxyl groups after dehydration treatment methods will be suitable in accordance with the invention. Because of availability, both of silica and silica containing metal oxide based supports, for example, silica-alumina, are industrially preferred. Silica particles, gels and glass beads are most typical.
These metal oxide compositions may additionally contain oxides of other metals, such as those of Al, K, Mg, Na, Si, Ti and Zr and should preferably be treated by thermal and/or chemical means to remove water and free oxygen. Typically such treatment is in a vacuum in a heated oven, in a heated fluidized bed or with dehydrating agents such as organo silanes, siloxanes, alkyl aluminum compounds, etc. The level of treatment should be such that as much retained moisture and oxygen as is possible is removed, but that a chemically significant amount of hydroxyl functionality is retained. Thus calcining at up to 800° C., or more up to a point prior to decomposition of the support material, for several hours is permissible, and if higher loading of supported anionic activator is desired, lower calcining temperatures for lesser times will be suitable. Where the metal oxide is silica, loadings to achieve from less than 0.1 mmol to 3.0 mmol activator/g SiO
2
are typically suitable and can be achieved, for example, by varying the temperature of calcining from 200 to 800+° C. See Zhuralev, et al, Langmuir 1987, vol. 3, 316 where correlation between calcining temperature and times and hydroxyl contents of silicas of varying surface areas is described.
Polymeric supports are preferably hydroxyl-functional-group-containing polymeric substrates, but may be any of the primary alkyl amines, secondary alkyl amines, and others, where the groups are structurally incorporated in a polymeric chain and capable of a acid-base reaction with the Lewis acid such that a ligand filling one coordinat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Supported organometallic catalysts and their use in olefin... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Supported organometallic catalysts and their use in olefin..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Supported organometallic catalysts and their use in olefin... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2893174

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.