Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai
Reexamination Certificate
1999-08-17
2002-07-30
Levy, Neil S. (Department: 1616)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Carbohydrate doai
C424S405000, C424S406000
Reexamination Certificate
active
06426333
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to spot-on formulations for combating parasites in birds and mammals. In particular, this invention provides for spot-on formulations comprising a composition comprising a 1-N-phenylpyrazole derivative and/or a macrolide anthelmintic or antiparasitic agent, and a pharmaceutically or veterinary acceptable liquid carrier vehicle. This invention also provides for to an improved method for eradicating, controlling, and preventing parasite infestation in birds and mammals.
BACKGROUND OF THE INVENTION
Animals such as mammals and birds are often susceptible to parasite infestations. These parasites may be ectoparasites, such as insects, and endoparasites such as filariae and worms.
Domesticated animal, such as cats and dogs, are often infested with one or more of the following ectoparasites:
cat and dog fleas (Ctenocephalides felis, Ctenocephalides sp. and the like),
ticks (Rhipicephalus sp., Ixodes sp., Dermacentor sp., Amblyoma sp. and the like), and
galls (Demodex sp., Sarcoptes sp., Otodectes sp. and the like).
Fleas are a particular problem because not only do they adversely affect the health of the animal or human, but they also cause a great deal of psychological stress. Moreover, fleas are also vectors of pathogenic agents in animals, such as dog tapeworm (Dipylidium caninum), and humans.
Similarly, ticks are also harmful to the physical and psychological health of the animal or human. However, the most serious problem associated with ticks is that they are the vector of pathogenic agents, agents which cause diseases in both humans and animal. Major diseases which are caused by ticks include borrelioses (Lyme disease caused by Borrelia burgdorferi), babesioses (or piroplasmoses caused by Babesia sp.) and rickettsioses (also known as Rocky Mountain spotted fever). Ticks also release toxins which cause inflammation or paralysis in the host. Occasionally, these toxins are fatal to the host.
Moreover, galls are particularly difficult to combat since there are very few active substances which act on these parasites and they require frequent treatment.
Likewise, farm animals are also susceptible to parasite infestations. For example, cattle are affected by a large number of parasites. A parasite which is very prevalent among farm animals is a tick genus Boophilus, especially those of the species microplus (cattle tick), decoloratus and anulatus. Ticks, such as Boophilus microplus, are particularly difficult to control because they live in the pasture where the farm animals graze. Other important parasites of cattle and sheep are listed as follows in order of decreasing importance:
myiases such as Dermatobia hominis (known as Berne in Brazil) and Cochlyomia hominivorax (greenbottle); sheep myiases such as Lucilia sericata, Lucilia cuprina (known as blowfly strike in Australia, New Zealand and South Africa). These are flies whose larva constitutes the animal parasite;
flies proper, namely those whose adult constitutes the parasite, such as Haematobia irritans (horn fly);
lice such as Linognathus vitulorum, etc.; and
galls such as Sarcoptes scabiei and Psoroptes ovis.
The above list is not exhaustive and other ectoparasites are well known in the art to be harmful to animals and humans. These include, for example migrating dipterous larvae.
Animals and humans also suffer from endoparasitical infections including, for example, helminthiasis which is most frequently caused by a group of parasitic worms described as nematodes or roundworms. These parasites cause severe economic losses in pigs, sheep, horses, and cattle as well as affecting domestic animals and poultry. Other parasites which occur in the gastrointestinal tract of animals and humans include Ancylostoma, Anecator, Ascaris, Strongyloides, Trichinella, Capillaria, Roxocara, Toxascaris, Trichiris, Enterobius and parasites which are found in the blood or other tissues and organs such as filarial worms and the extra intestinal stages of Strogyloides, Toxocara and Trichinella.
Many insecticides exist in the art for treating parasites. These insecticides vary in their effectiveness to a particular parasite as well as their cost. However the results of these insecticides is not always satisfactory because of, for example, the development of resistance by the parasite to the therapeutic agent, as is the case, for example, with carbamates, organophosphorus compounds and pyrethroids. Moreover, there is at the present time no truly effective method for controlling both ticks and helminths and less still an effective way of controlling the set of parasites indicated above. Thus, there is a need in the art for more effective antiparasitic formulation treatment and protection of animal and birds for a wide range of parasites. Moreover, there is a need in the art for antiparasitic formulation which is easy to use on any type of domestic animal, irrespective of its size and the nature of its coat and which do not need to be sprinkled over the entire body of the mammal or bird.
A new family of insecticides based on 1-N-phenylpyrazoles is described in Patents EP-A-295,217 and EP-A-352,944. The compounds of the families defined in these patents are extremely active and one of these compounds, 1-[2,6-Cl
2
-4-CF
3
phenyl]-3-CN-4-[SO—CF
3
]-5-NH
2
pyrazole, or fipronil, is particularly effective, not only against crop parasites but also against ectoparasites of mammals and birds. Fipronil is particularly, but not exclusively, effective against fleas and ticks.
Endectocidal compounds, which exhibit a degree of activity against a wide range endoparasites, are known in the art. These compounds possess a macrocyclic lactone ring and are known in the art to be particularly effective against ectoparasites, including lice, blowflies, mites, migrating dipterous larvae, and ticks, as well as endoparasites, such as nematodes and roundworms. Compounds of this group include avermectins, milbemycins, and derivatives of these compounds, for example, ivermectin. Such substances are described, for example, in U.S. Pat. Nos. 3,950,360 and 4,199,569.
While it is known in the art that it is sometimes possible to combine various parasiticides in order to broaden the antiparasitical spectrum, it is not possible to predict, a priori, which combinations will work for a particular animal or disease state. For this reason, the results of various combinations is not always successful and there is a need in the art for more effective formulations which may be easily administered to the animal. The effectiveness of formulations comprising 1-N-phenylpyrazole derivatives and macrolide lactone anthelmintic or parasitic agents, such as avermectins, ivermectins and milbemycin, against an endoparasite or an ectoparasite in a specific host is especially difficult to predict because of the numerous and complex host-parasite interactions.
Patent application AU-A-16 427/95 very broadly mentions the combination of a substituted 1-N-pyrazole derivatives with an avermectin, ivermectin or moxidectin in a discussion involving among a very large number of insecticides or parasiticides of various types, including fipronil. However, this patent application does not provide specific guidance to the skilled artisan on how to formulate a 1-N-pyrazole derivative with an avermectin or milbemycin type compound, let alone how to formulate a spot-on composition comprising these compounds. Moreover, the application does not indicate which specific parasites are susceptible to what specific combination.
Various methods of formulating antiparasitical formulations are known in the art. These include oral formulations, baits, dietary supplements, powders, shampoos, etc. Formulations for localized topical applications of antiparasitical formulations are also known in the art. For example, pour-on solutions comprising 1-N-phenylpyrazoles, such as fipronil, are known in the art and are described in copending application Ser. No. 08/933,016, herein incorporated by reference. Other methods of formulating antiparasitic agents include spot-on f
Etchegaray Jean-Pierre
Huet Anne-Marie
Jeannin Philippe
Julia Bruno
Weil André
Frommer William S.
Frommer & Lawrence & Haug LLP
Kowalski Thomas J.
Levy Neil S.
Merial
LandOfFree
Spot-on formulations for combating parasites does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Spot-on formulations for combating parasites, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spot-on formulations for combating parasites will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2889098