Aquerous urea for fire control

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Cellular products or processes of preparing a cellular...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C521S095000, C521S107000, C521S906000, C252S609000, C252S607000, C523S179000, C525S428000

Reexamination Certificate

active

06444718

ABSTRACT:

FIELD
This invention concerns aqueous urea utilized as fire controlling agent. The invention also concerns the preparation and use of aqueous urea. The aqueous urea is useful to stop house fires, grass and forest fires, to produce flame retarded water based plastic, flame retarded polyurethane foam, etc, and flame retard flammable organic materials by spraying the outside with aqueous urea and/or an aqueous urea composition.
BACKGROUND
Urea in the form of a solid compound has been used as a flame retardant agent in polyurethane foams as outline in U.S. Pat. No. 4,385,131 (racalossi et al.). Many patents use solid urea condensates, urea phosphates, urea borates and urea derivative as the flame retardant agent. The use of aqueous urea as the flame retardant compound is novel. When solid urea is used in sufficient amounts, as the flame retardant retardant compound in the production flame retardant organic products, such as polyurethane products it leaves a slimy or soapy feel to the outer surface of the urethane products, which is very undesirable. The urea migrates out and the product becomes less fire retardant. When the aqueous urea is utilized, the water and urea reacts with the polyisocyanate and becomes a part of the product. There is no slimy or soapy feel to this foam. Aqueous urea is a fertilizer and is very environmentally safe product to use on grass and forest fires. When used for fire fighting the aqueous urea may contain coloring agents such as iron oxide, thickening agents, gellng agents, corrosive inhibitors, bactericide agents, surfactant and wetting agents. Aqueous urea is more economical to use to fight fires than the commonly used fire fighting chemicals such as various ammonium phosphates, and ammonium sulfate.
What is lacking and what is needed are useful, safe and inexpensive flame retardant compounds found in aqueous urea. What is additionally lacking are compositions have aqueous urea employed therein.
SUMMARY
In one aspect, the invention comprises the flame retardant aqueous urea. Another aspect of the invention is a process to prepare the aqueous urea by producing the urea from ammonia and carbon dioxide in an aqueous solution. Urea is commercially available.
Another aspect of this invention is the process to prepare an aqueous urea composition by mixing:
(A) aqueous urea, in the amount of 25 to 200 parts by weight;
(B) carbonization auxiliaries, in the amount of 0 to 200 parts by weight;
(C) metal containing compound that will accelerate the carbonization process, in the amount of 0 to 30 parts by weight;
(D) heat reflecting compound, in the amount of 0 to 30 parts by weight;
(E) filler, in the amount of 0 to 200 parts by weight;
(F) surfactant, in the amount of 0 to 30 parts by weight.
Another aspect of this invention is to apply on and/or incorporating in a more flammable organic material (Component G) the flame retardant compounds, aqueous urea and/or the aqueous urea composition.
Another aspect of this invention is to utilize the aqueous urea and/or the aqueous urea composition to fight fires such as grass fires, forest fires, house fires, furniture fires, etc. In fighting grass fires a water diluted solution of aqueous urea and/or aqueous urea composition with or without surfactant, to produce bubbles may be sprayed directly on the flames or may be sprayed in front of the flames thereby wetting the organic materials in front of the fire. The aqueous urea and/or aqueous urea composition, even after drying, and for several day afterwards, will prevent the coated organic materials such as grass, leaves and bushes from catching on fire when exposed to flames.
Component A
Any suitable aqueous urea may be utilized in this invention. The aqueous urea produced in the manufacturing process of producing urea and/or the aqueous urea produced by adding solid urea to water. Usually the aqueous solution of urea contains 50% or less of urea.
Component B
Any suitable carbonization auxiliaries may be utilized in this invention. Suitable carbonization auxiliaries are compounds that in the presence of fire assist the formation of a carbonization foam or char, such as, additives that produce acidic components in the pyrolysis mixture, such as phosphorus acids, boric acids or sulfuric acids. These acidic components are compounds such, for example, acids or salts, or their derivatives of sulfur, boron and phosphorus, such as, boron-phosphates, phosphates, and polyphosphates of ammonia, amines, polyamines, amino compounds, thioureas and alkyanolamines, but boric acid and its salts and their derivatives, organic phosphorus compounds and their salts, halogenated organic phosphorus compounds, their salts and their derivatives, sulfuric acids, their salts and their derivatives such as ammonium sulfate, urea sulfate, etc., may also be used for this purpose. The commonly known fertilizer which contains phosphorus or sulfur are inexpensive carbonization auxiliaries that can be used with the aqueous urea especially in fire fighting and fire prevention and are preferred. The carbonization auxiliaries and other flame retardant agents may be used in quantities of 0 to 200 parts by weight. The carbonization auxiliaries and other flame retardant agents are not a necessary component but when used is used in an amount of 5 to 200 part by weight.
The nitrogen containing salts of phosphorus acids are the preferred carbonization compounds, such as amino phosphate, amine and polyamine phosphates, amino salts of organic phosphorus compounds and amino condensation salt of inorganic and organic phosphorus compounds. The condensation salt of phosphorus compounds are produced by contacting urea condensates such as, biuret, cyanuric acid and cyamelide or other amino compounds with a phosphorus containing compound that will react with an amino compound, under conditions sufficient to prepare an amino salts of a phosphorus containing compound. Suitable inorganic phosphorus compounds include, but not limited to, phosphoric acid, pyrophosphoric add, triphosphoric acid, metaphosphoric acid, phosphorous acid, hydrophosphorous acid, phosphinic acid, phosphinous acid, phosphine oxide, phosphorus trihalides, phosphorus oxyhalides, phosphorus oxide, and their salts, amino phosphates, amine phosphates, mono-metal hydrogen phosphates, ammonium dihydrogen phosphate, ammonium phosphate, bromated phosphates, alkali metal dihydrogen phosphate, and halogenated phosphate-phosphite and their halides and acids. organic phosphorus compounds include, but not limited to, alkyl, cyclic, aryl and alkyl-aryl phosphorus compounds, such as, alkylchlorophosphines, alkyl phosphines, alkyl phosphites, dialkyl hydrogen phosphites, dialkyl alkyl phosphonates, trialkyl phosphites, organic acid phosphates, organic diphosphonate esters, aryl phosphites, aryl hydrogen phosphates, halogenated phosphonates esters, biuret phosphate, cyanuric phosphate, cyamelide phosphate, and urea, biuret, cyanuric acid and cyamelide borates and mixtures thereof.
Component C
Any suitable metal-containing compound that will accelerate carbonization effect used in this invention increases the amount of carbonization residue after combustion, thereby enhancing the flame retardant effect and may be used in this invention. These compounds include, but not limited to, alkaline earth metal borates such as magnesium borate, calcium magnesium borate and the like, manganese borate, zinc borate, metal oxides of titanium oxide, tin oxide, nickel oxide, zinc oxide and the like, ferrocene, dimethylglyoxime copper, acetyl-acetonatocooper, hydroxyquinoline nickel and the like, zinc thiocarbamate compounds such as zinc dimethylthio-carbamate , zinc di-n-butyidithiocarbamate and the like, mercaptobenzothiazole zinc compounds such as mercaptobenzothiazole zinc and the like, salicyadehyde zinc compounds such as salicylaldehyde zinc and the like, metal hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium magnesium hydroxide, zirconium hydroxide and the like and mixtures thereof. The most preferable compounds are selected from zinc oxide, zinc thiocarbama

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Aquerous urea for fire control does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Aquerous urea for fire control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aquerous urea for fire control will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2885102

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.