Method for acquiring time-resolved and location-resolved,...

Electricity: measuring and testing – Particle precession resonance – Using a nuclear resonance spectrometer system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S307000

Reexamination Certificate

active

06380740

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to a method for acquiring time-resolved and location-resolved three-dimensional data sets by magnetic resonance, as well as to an apparatus for implementing the method.
2. Description of the Prior Art
The representation of blood vessels (angiography) is currently being increasingly implemented with MR technology. An MR contrast agent (for example, GdDTPA) is often utilized for this purpose in conjunction with a shortening of the T
1
time, so that the spread of the contrast agent can be tracked well with the assistance of highly T
1
-weighted pulse sequences. Typically, the contrast agent is intravenously injected. The examination is implemented as soon as the contrast agent is located in specific arteries. Given the standard contrast agent dose and an injection rate of 2 ml/s, the injection is carried out over a time span of, for example, 8-12 seconds. The MR measurement must ensue when the contrast agent is flowing through the vessel section to be examined. When, for example, the contrast agent has already spread in veins or in tissue sections that lie in the observation window, a diagnosis on the basis of the angiography examination becomes considerably more difficult. An exact timing of the MR measurement is not entirely simple, particularly because the time between the beginning of the contrast agent injection and the appearance of the contrast agent in the vessel section to be examined (also referred to as transit time) varies dependent on the vascular section to be examined and also differs from patient to patient. Therefore, a fixed time difference between contrast agent injection and measurement can therefore be employed; rather, the point in time of the measurement must be individually matched to the examination. These relationships are explained, for example, in U.S. Pat. Nos. 5,417,213 and 5,553,619 and 5,579,767 and 5,590,654.
Heretofore, one of the following methods was usually employed for synchronization between contrast agent injection and measurement:
A prior information about the average transit time: The transit time to a specific vascular section can be roughly empirically estimated. Additionally, age or other physiological information about the patient can also be considered in order to correctly estimate the transit time. Dependent on the experience of the examining person and on the individual measuring situation, unusable measurements or even misinterpretations, however, can occur.
Measuring the transit time with the assistance of a test bolus: A small test bolus (for example, approximately 1 cm
3
) of the contrast agent is employed in order to determine the actual transit time. This in fact leads to more precise measurements but lengthens the measuring time and increases the outlay for the operator of the system.
It is also known to use a fast, two-dimensional MR sequence to observe when the contrast agent arrives in an area in the observation window or just before the observation window. As soon as the examining person determines the arrival of the contrast agent, the start signal is given for the actual angiography measurement in the form of a 3D measuring sequence.
The aforementioned measuring sequence can also be automated in that the MR system recognizes a signal change due to the entry of the contrast agent in a test measuring window and then automatically triggers the angiography measurement with a 3D measuring mode.
In addition to exact timing, another problem in the above technique is that only one image is obtained in a predetermined measuring window. If a vessel, particularly in the case of a vascular illness, does not fill with contrast agent until later, this can lead to a misdiagnosis.
It is also possible to implement a series of 3D measurements following one another fast enough, with especially fast gradient echo sequences, so that not only the condition of the spread of the contrast agent at a predetermined point in time that is identified, but also the flow behavior of the contrast agent bolus into an observation window or, in more general terms, the contrast agent dynamics in the vessels under observation that can be acquired. The diagnostic value is thus considerably expanded, and the aforementioned problems with the exact timing of the measurement are eliminated. For example, a repetition time of 3.2 ms is currently achieved with fast gradient echo sequences having extremely short echo times. The measuring time Tacq for the measurement of a complete 3D dataset is derived according to the following equation:
Tacq=TR·Np·Ns
wherein Tacq is the measuring time, TR is the repetition time, Np is the number of phase-coding steps in a phase coding direction, and Ns is the number of phase-coding steps in slice selection direction. When, for example, Np=100 and Ns=24 are selected, then the measuring time for a 3D dataset is 7.75, with the aforementioned repetition time of TR=3.2 ms. An adequate separation of arterial and venous phases is generally achieved by means of a series of such measurements, for example in the carotid artery. The spatial resolution is established by the number of phase coding steps in phase coding direction or slice selection direction. It follows from the above equation that the measuring time becomes longer, i.e. the time resolution becomes poorer, the better the spatial resolution is. Such measurements are therefore always a compromise between time resolution and spatial resolution.
German PS 43 27 325, corresponding to U.S. Pat. No. 5,474,067, discloses a technique for shortening the measuring time for motion events without having to accept losses in the time resolution. The k-space can thereby be divided into individual segments. With the acquisition of a number of filed raw datasets at different times of a motion sequence, signals of the middle segment are employed in common for two chronologically successive raw datasets, i.e. the middle segment is measured more often than the other segments. The fact is exploited that the image contrast of the image reconstructed from the raw datasets is predominantly determined by the center of the k-space.
Although the time resolution and/or spatial resolution of MR measurement is already clearly improved with this method, the spatial or time resolution is still inadequate in many applications, particularly given 3D datasets.
It is known, for example from the article, “Are the corners of k-space worth preserving?', by M. A. Bernstein, Proceedings of the Society of Magnetic Resonance, 1995, Vol. 2, page 734, that the “corners” of the k-space, i.e. data that lie outside a circle, can be discarded in the image reconstruction without greater sacrifices in quality.
According to an article, “A circular echo planar pulse sequence”, by J. M. Pauly et al., Proceedings of the Society of Magnetic Resonance, 1995, page 106, this fact is used for scanning a circular area of the k-space with an EPI sequence. The lines of the raw data matrix are thereby shortened toward the edges of the k-space in readout direction.
German OS 43 17 028, corresponding to U.S. Pat. No. 5,754,046, discloses a modified keyhole scanning method of a three-dimensional k-space. The k-space is subdivided into cuboid sub-areas, each cuboid covering the entire k-space in the z-coordinate direction. Sub-areas of the overall dataset that change from measurement to measurement are updated in a predetermined sequence.
German OS 197 13 005 discloses implementing the phase coding of the nuclear magnetic resonance signals, for contrast agent tracking with MR imaging, such that measured values in the central area of the k-space are acquired at earlier times than measured values in edge regions of the k-space.
Segmenting does not take place in this method.
SUMMARY OF THE INVENTION
An object of the present invention is to implement a method or an apparatus for acquiring a number of three-dimensional MR datasets such that the spatial resolution and/or time resolution of the measurement is improved.
This

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for acquiring time-resolved and location-resolved,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for acquiring time-resolved and location-resolved,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for acquiring time-resolved and location-resolved,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2881099

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.