Electrokinetic concentration of charged molecules

Chemistry: electrical and wave energy – Processes and products – Electrophoresis or electro-osmosis processes and electrolyte...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S451000, C204S518000, C204S540000, C204S542000, C204S554000, C204S600000, C204S624000, C204S601000, C210S748080

Reexamination Certificate

active

06428666

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not applicable.
BACKGROUND OF THE INVENTION
The present invention pertains generally to method and apparatus for separating and concentrating charged species from a carrier fluid and particularly to the use of a porous stationary phase that operates to reversibly remove and retain all the charged species, that can include molecules and particles, from a solution when a voltage gradient is applied to the porous stationary phase.
It is frequently the case that it is desired to analyze molecular species that are present in very low concentration either because the sample itself is very small or dilute or because the species of interest is present as a consequence of prior chemical processing and is thus at very low concentration. Moreover, these molecular species can be charged and being in the presence of uncharged molecules present further difficulty in analysis or separation.
For some time biochemists have exploited techniques wherein macromolecules are electrophoretically deposited onto porous membranes, such as nitrocellulose or porous glass. These membranes are generally impermeable to the macromolecular species and thus, this technique is essentially a form of ultrafiltration. Macromolecular species can also be concentrated by deposition on membranes by hydrostatic or centrifugal force. This same technique can be used for preconcentration of species prior to injection into a microfluidic analysis system. However, the species must be subsequently removed from the membrane prior to injection into an analysis column. Removal typically can be accomplished by the use of fluid flowing parallel to the surface of the membrane. In any case, removal by these methods can cause dilution of the species of interest, essentially negating at least part of the step of concentration.
There are numerous art-recognized techniques for concentration and separation of molecules that overcome the problems discussed above. Typical of these methods are those disclosed in U.S. Pat. No. 5,423,966 entitled “On Line Ion Contaminant Removal Apparatus and Method for Capillary Electrophoresis” issued to Wiktorowicz on Jun. 13, 1995 and U.S. Pat. No. 4,617,102 entitled “Process and Apparatus for Purifying and Concentrating DNA from Crude Mixtures Containing DNA” issued to Tomblin et al. Oct. 14, 1986. Here, filtration devices are used to concentrate analytes by passing a sample through a porous material. Analyte molecules smaller than the pores go through the porous structure and molecules larger than the pores are retained either within or at the upstream end of the porous material. The retained molecules can be recovered in concentrated form by reversing flow direction of the solvent or other fluid. Devices of this type retain all molecules of the size retained on the porous structure whether or not they are charged. Further, the size of the pores determine the size of the molecule trapped. If the molecule of interest is smaller than the pore size of the porous structure it cannot be retained. Thus, these methods of concentrating molecules depend upon having available a porous material that has pores of the size necessary to trap molecules of interest. Further, these methods are unable to distinguish between charged and uncharged analyte molecules.
U.S. Pat. No. 5,800,692 entitled “Preseparation Processor for Use in Capillary Electrophoresis” issued to Naylor et al. Sep. 1, 1998; U.S. Pat. No. 5,340,452 entitled “On-Column Preconcentration of Samples in Capillary Electrophoresis” issued to Brenner et al. Aug. 23, 1994; and U.S. Pat. No. 5,453,382 entitled “Electrochromatographic Preconcentration Method” issued to Novotny et al. Sep. 26, 1995 disclose another common method for concentrating an analyte, the use of a material that selectively adsorbs or binds analyte molecules allowing everything else to pass through. The adsorbed analyte can be subsequently desorbed by changing the composition of the buffer or, by way of example, by the use of electro-osmotic flow, wherein a voltage is impressed across the adsorbant to induce electro-osmotic flow thereby removing the adsorbed material from the adsorbant. Here, concentration of the analyte depends upon the selective adsorption properties of the adsorbant material consequently, these techniques generally require application-specific use of absorbent material and are unable to readily distinguish between charged or uncharged molecules. Further, desorption generally requires a change in the mobile phase or buffer.
Sample preconcentration techniques employing isotachophoresis and field-amplification in discontinuous buffer systems are disclosed in U.S. Pat. No. 5,116,471 entitled “System and Method for Improving Sample Concentration in Capillary Electrophoresis” issued to Chien et al. May 26, 1992 and U.S. Pat. No. 5,766,435 entitled “Concentration of Biological Samples on a Microliter Scale and Analysis by Capillary Electrophoresis” issued to Liao et al. Jun. 16, 1998. Isotachophoresis effects preconcentration of a sample by introducing a sample plug between two separate buffer systems and applying an electric field thereto. The leading electrolyte is chosen so that its mobility is faster than that of the ions in the sample while the mobility of the following electrolyte is slower. When an electric field is applied the ions order themselves according to their mobility causing the sample to be separated into zones containing its various ionic constituents. However, several problems have been encountered in the application of the method of iostachophoresis. In the absence of spacer ions, the different separated zones of a mixture border on each other and are thus difficult to recover without contamination from adjacent components. Spacer ions must possess very particular properties and thus are not always available. Moreover, to obtain adequate separation the components must be caused to move a considerable distance which demands a high voltage. Further, isotachophoresis has a limited capacity.
In field amplification schemes (commonly referred to as “stacking”) sample ions are introduced into a capillary column in a plug of buffer solution having a significantly lower conductivity than a background buffer electrolyte. When a voltage is applied across the capillary column the region of decreased conductivity associated with the sample experiences an increase in field strength relative to that of the background electrolyte. The increased field strength causes the charged molecules of the sample to quickly migrate to the boundary of the low conductivity zone. Crossing the boundary into the region of higher conductivity (and lower field strength) causes the charged molecules of the sample to slow down which has the effect of “stacking” the ions in the sample into a concentrated zone at the boundary of the two buffer regions. In order to be effective as a means of concentrating charged molecules, the method of field amplification requires precise control of both the conductivity of the background electrolyte as well as that of the sample. Thus, this method of sample concentration requires the use of two different and carefully tailored electrolytes; a common background electrolyte cannot be used.
Another method of concentrating the constituents of a sample is found in U.S. Pate. No. 4,323,439 entitled “Method and Apparatus for Dynamic Equilibrium Electrophoresis” issued to O'Farrell on Apr. 6, 1982 wherein a mixture of different molecular species can be concentrated by the method of electrophoresis in the presence of a counterflowing carrier fluid in a separation chamber having a particle bed with longitudinally varying separation characteristics contained therein. This technique combines size exclusion chromatography in a packed bed of particles having a gradient of exclusion limit with countervailing electrophoresis that tends to drive the molecular species in the sample in a direction opposite that imposed by fluid flow through the chromatographic column. In this way a molecule of interest is concentrated in a zone whe

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electrokinetic concentration of charged molecules does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electrokinetic concentration of charged molecules, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electrokinetic concentration of charged molecules will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2880392

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.