Optical spectrum analyzer

Optical waveguides – With optical coupler – Input/output coupler

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S047000

Reexamination Certificate

active

06343170

ABSTRACT:

FIELD AND BACKGROUND OF THE INVENTION
The present invention relates to optical spectrum analyzers, such as are used in optical multiplexers and demultiplexers, and, more particularly, to a monolithic optical spectrum analyzer based on a volume phase grating.
Fiber-optic systems are presently being developed for high-bandwidth, high-speed voice, video, and data communications. Originally, single-channel systems in which each fiber carried a single channel sufficed, but increasing traffic has led to a need for greater bandwidth. Because of the high cost of laying optical fibers, achieving greater efficiency in utilizing existing fiber resources has become increasingly important. This trend has led to the development of systems which provide two-way multiple channel communications over a single fiber.
In fiber optic systems, a convenient way to carry multiple channels over a single fiber without interference between the channels, for both one-way and bi-directional communications, is by means of a technique known as wavelength division multiplexing (WDM). According to this technique, multiple signals of separate wavelengths are coupled to the fiber at the transmitting side and separated at the receiving side. WDM is now a well-established technology to increase the information capacity of fiberoptic links, with 4, 8, and 16 channel systems already installed. These systems typically use cascaded discrete components such as interference filters or fiber gratings to separate channels with spacing of 200 to 400 GHz. The next generation of WDM systems expected to be deployed in the near future is Dense Wavelength Division Multiplexing and will support up to 60 or more 100 GHz channels or up to 120 or more 50 GHz channels. For such high channel counts, a parallel architecture is required for multiplexing/demultiplexing units because cascading a large number of systems can lead to problems including cumulative crosstalk, center wavelength inaccuracy, polarization dependent wavelength shift, and temperature instability.
Currently, there are two approaches that are capable of meeting these requirements: phased array waveguides, and diffraction gratings. The former is a monolithic approach that has been reported extensively in the literature but has significant problems for very large channel counts and requires temperature control. The latter approach with diffraction gratings has also been reported extensively in the literature. Most of the reported techniques utilize surface-relief diffraction gratings. In recent years, a new type of grating has been developed using holographic techniques, called the volume phase (VP) grating. Rather than being diffracted by surface-relief structures as in a surface grating (typically generated either by diamond ruling or by a holographic exposure of a photoresist layer), in a VP grating the light undergoes Bragg diffraction as it passes through the volume of a thin layer of material, in which the refractive index is modulated (for example, hardened dichromated gelatin). These volume-phase holographic gratings show improved performance over classical, low-order surface-relief gratings with respect to the following performance characteristics:
1. The blaze or efficiency envelope is governed by Bragg diffraction and can be tuned by adjustment of the grating angle for different wavelengths or diffraction orders.
2. VP gratings can have high diffraction efficiencies, approaching 100% for high line density (600 to 6000 l/mm), high dispersion transmission gratings, with low dependence on polarization angle.
3. Complex structures including the grating itself and collimating and focusing optics can be produced, in a monolithic configuration, to minimize the required number and/or complexity of optical elements, simplifying optical design and alignment and enhancing device efficiency.
4. The grating can be sandwiched between two appropriate substrates, to provide an environmentally stable device which is robust and has long lifetime without degradation.
A few prior art systems, based on the VP grating, have been shown to be suitable for multiplexing and demultiplexing. See, for example, Behzad Moslehi et al., “Fiber-optic wavelength-division multiplexing and demultiplexing using volume holographic gratings”,
Optics Letters
vol. 14 no. 19 pp. 1088-1090 (1989) and Charles C. Zhou et al., “Axial-graded-index (AGRIN) lens-based eight-channel wavelength division demultiplexer for multimode fiber-optic systems”, IEEE
Photonics Technology Letters
vol. 10 no. 4 pp. 564-566 (1998).
The device reported by Zhou et al. utilizes multimode fibers of 50 micrometer core diameter, 500 GHz spacing, covers a wavelength range from 764 to 792 nm, and utilizes Gradient Index Lenses (GRIN) as the imaging optics. State-of-the-art GRIN imaging optics are available commercially only in relatively small diameters, typically 0.5 to 3 mm. In fact, only very small diameter GRIN lenses can be manufactured with high precision and repeatability, as far as their doping profile is concerned, which in turn determines the index of refraction profile. As a result, the required high resolution of 50-100 GHz can be achieved only in two ways, either by using large surface gratings or by using large diffraction angles or grazing angles. The latter configuration, based on large diffraction angles, decreases the grating efficiency due to losses in the cavity. On the other hand, the former method, based on large surface gratings, requires larger imaging optics, so that an area of at least 1 centimeter width of grating is illuminated without degradation of efficiency. Because GRIN lenses can not be manufactured practically with diameters greater than about 3 millimeters, GRIN lenses are not optimal for this application.
The device of Moslehi et al. uses a VP grating and operates in the wavelength range of 710 to 900 nm and in a Littrow configuration. This is done by tilting the grating planes at an angle almost parallel with the grating surface. When the device is used in a reflection configuration the grating efficiency can be quite high for low dispersion applications (larger than 15 nm separation); however, for high dispersion applications, such as those required for DWDM (wavelength spacing of 0.8 nm to 0.4 nm) the efficiency bandwidth is narrower than desired.
Zhang et al., in U.S. Pat. No. 6,108,471, teach a wavelength demultilplexer in which a lens collimates a multi-wavelength input beam from an input optical fiber onto a VP grating. The resulting diffracted beams are reflected back through the VP grating to be diffracted a second time, and then are focused by the lens onto their respective output fibers.
The device of Zhou et al. is monolithic. The devices of Moslehi et al. and Zhang et al. are made of discrete components, and so are not as mechanically stable as the device of Zhou et al.
Kaiser Optical Systems of Ann Arbor Mich. offers for sale the monolithic, VP-grating-based device illustrated in FIG.
1
. This device consists of a VP grating
20
sandwiched between two prisms
22
and
24
. Also shown in
FIG. 1
is a collimated input beam
26
that includes three wavelengths that emerge from the device as three output beams
28
a
,
28
b
and
28
c
. The device of
FIG. 1
diffracts input beam
26
at large diffraction angles, and so suffers from the same deficiencies as the Zhou et al. device discussed above.
There is thus a widely recognized need for, and it would be highly advantageous to have, a volume-phase-grating based multiplexer and demultiplexer that would overcome the disadvantages of presently known devices as described above.
SUMMARY OF THE INVENTION
According to the present invention there is provided an optical spectrum analyzer including: (a)at least one volume phase grating; (b) a first reflector; and (c) a second reflector; the first and second reflectors being in a fixed spatial relationship with the at least one volume phase grating, so that light entering the optical spectrum analyzer is reflected by the first reflector towards the at least one volume phase grating, t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical spectrum analyzer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical spectrum analyzer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical spectrum analyzer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2874994

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.