Sliding bearing and sliding bearing structure

Bearings – Rotary bearing – Plain bearing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C384S288000, C384S294000

Reexamination Certificate

active

06357918

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a sliding bearing for an internal combustion engine and particularly for receiving dynamic load, and a sliding bearing structure having this sliding bearing.
Recently, in order to achieve a light-weight design, a housing for mounting a sliding bearing is thinned in thickness or is used an aluminum alloy, and resultantly the housing is reduced in rigidity. Thus, in the housing, more micro repetitive strains than before are apt to occur due to the dynamic load. For example, in a big end portion of and in a main bearing portion of a connecting rod for the internal combustion engine, a light-weight design is adopted for achieving a high-speed, high-temperature, and high load design. Between an inner face of a housing corresponding to these big end portion, the main bearing portion, and a back face of a sliding bearing attached thereto, there occur relative micro collision and micro slip due to the repetitive strains of the housing, with the result that damage is apt to occur due to fretting wear.
To cope with the fretting wear, there have been hitherto known a sliding bearing in which the back face thereof is provided with a coating layer made of a resin such as PTFE superior in lubrication, and another sliding bearing in which the back face thereof is provided with a coating layer formed by plating silver or copper.
In JP-A-61-88020 there is disclosed a sliding bearing provided on the back face thereof with a coating layer made of a copper alloy or a nickel alloy or an aluminum alloy which coating layer has a hardness of 15 to 80 Hv. By this soft metal coating layer, it is said that the occurrence of the fretting wear is restrained.
In JP-A-2-89813 there is disclosed a sliding bearing having a composite plating layer as a coating layer thereof which composite plating layer is formed by precipitating PTFE in the plating layer of Ni or Co. In this sliding bearing, in order to prevent the plating layer from being peeled off from the back metal of the sliding bearing due to the inferior adherence of PTFE, the composite plating layer of both the PTFE and Ni or Co is provided. By preventing the PTFE with a low friction coefficient from being peeled off, it is said that the fretting corrosion resistance can be fairly improved.
In JP-A-6-94036 according to the present applicant is disclosed a sliding bearing having a phosphate coating as a coating layer. This is one in which the fretting resistance is improved by providing the phosphate coating low in friction coefficient.
However, insofar as the soft coating layer disclosed in JP-A-61-88020 made of a metal having a hardness of 15 to 80 Hv is concerned, an adhesion phenomenon is apt to occur between the back face of the bearing and the housing thereof due to insufficient rigidity, therefore the fretting being apt to occur. Thus, it has been impossible to obtain sufficient fretting resistance insofar as only such means as the soft metal coating layer is concerned.
Further, regarding a coating layer made of both of PTFE and a metal such as Ni which coating layer is disclosed in JP-A-2-89813, due to micro friction occurring between the back face of a bearing and the housing thereof, there still remained such a problem as PTFE is apt to be peeled off, so that it was impossible to obtain sufficient fretting resistance.
Further, after repeating the researching of the phosphate coating disclosed in JP-A-6-94036 according to the present applicant, it has found that the provision of the phosphate coating makes the fretting resistance superior but makes the seizure resistance deteriorated due to the low thermal conductivity thereof.
THE OBJECT OF THE INVENTION
The object of the invention is to obtain a sliding bearing having both superior fretting resistance and superior seizure resistance, in which a phosphate coating is formed only at a portion at which fretting wear is apt to occur, no phosphate coating being provided at another portion other than the first portion, in which another portion a thermally good conductive coating is formed to enhance the heat-dissipating ability thereof.
In accordance with an aspect of the invention, there is provided a sliding bearing comprising a back metal layer having an inner face and a back face, a sliding layer bonded to said inner face of the back metal layer, a phosphate coating provided at a portion of said back face of said back metal layer at which portion fretting wear is apt to occur, and a thermally conductive coating having superior thermal conductivity which thermally conductive coating is provided at another portion of said back face which another portion is provided with no phosphate coating.
As a sliding bearing to which the invention is applied, it is possible to suitably adopt a double-layers-bearing in which a sliding layer of an alloy or a resin is formed on a back metal, or a tri-layers-bearing further provided with an overlay. As the alloy, it is possible to select one of such aluminum-based alloys, copper-based alloys and etc as to have been publicly known hitherto. As the resin, it is possible to suitably select a publicly known one of polyimide resin, polyamide-imide resin and a resin including one of these resin as a main constituent thereof. Further, as the overlay, it is also possible to suitably select a publicly known one of Pb-based alloy, Sn-based alloy and etc.
As the back metal, a cold rolled, soft steel sheet can be used properly, however, without being limited to this kind, it is possible to suitably use any one. Particularly, it is preferred to use a low carbon steel which is readily worked. As the phosphate coating, a usually used representative is one selected from zinc phosphate, manganese phosphate, zinc-calcium phosphate and ferrous phosphate. In these phosphates, the zinc phosphate has acicular crystals stacked obliquely, each of the manganese phosphate and the zinc-calcium phosphate being provided with crystals of a hexahedron, and the ferrous phosphate has columnar crystals of an indefinite shape.
Further, regarding the thickness of the phosphate coating, it is preferable to provide a phosphate coating of an about 2 to 30 &mgr;m in total in thickness on the inner face of the housing and/or on the back face of the back metal. In a case where the thickness of the phosphate coating is less than 2 &mgr;m, the wear resistance thereof becomes insufficient. In another case where the thickness thereof exceeds 30 &mgr;m, the phosphate coating is apt to be peeled off. Particularly, the thickness value thereof in the range of 4 to 20 &mgr;m is preferred in view of the respect of the good durability.
The phosphate coating is formed at a portion where the fretting wear is apt to occur. In explaining the portion in which the fretting wear is apt to occur, this portion means an angular range of the portion “A” in
FIG. 1
where relative micro collision and/or micro slippage occurs due to the repetitive strains of a housing
2
between the inner face of the housing
2
and the back face of a sliding bearing
1
. Namely, regarding the maximum load position “B” (which is, in
FIG. 1
, assumed to be the lowest position), the fretting wear is apt to occur most intensively at two portions each ranging ±10 degrees from each of radial lines C which are circumferentially spaced by 45 degrees clockwise and counter-clockwise from the maximum load position “B”. Thus, it is necessary to provide the phosphate coating at each of the two portions each circumferentially ranging from the radial line C to ±10 degrees. Further, the broader the range of the phosphate coating circumferentially provided becomes, the more the lowering of the heat-dispersing property becomes.
Further, on another portion of the back face other than the above portion at which the phosphate coating is provided, a coating of a material having a thermally good conductivity is formed so that seizure resistance is further enhanced because of the acceleration of heat dispersion achieved by the thermally good conductive coating.
As the thermally good conductive coa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sliding bearing and sliding bearing structure does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sliding bearing and sliding bearing structure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sliding bearing and sliding bearing structure will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2874552

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.