Method and structure for controlled shock and vibration of...

Electrical connectors – Preformed panel circuit arrangement – e.g. – pcb – icm – dip,... – With provision to conduct electricity from panel circuit to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06375475

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to electrical contacts between printed circuit boards and electronic modules, particularly involving contact sites through land grid array (LGA) sockets.
BACKGROUND OF THE INVENTION
A typical LGA interposer system comprises a printed circuit board (PCB) with electrically conductive contact pads, a module (or other printed circuit board) with a corresponding set of electrically conductive contact sites, an interposer between the module and the printed circuit board and an array of spring elements to make electrical contact between the module and the printed circuit board. Clamps are used to mechanically hold the module to the interposer and to electrically join the module contact sites through the spring elements to the printed circuit board pads.
A cooling device or heat sink is typically coupled to the module required to provide cooling of the entire electronic assembly. Many of the heat sinks have a substantial size and mass relative to the other components. This size and mass create a moment arm, causing relative movement between the module and the other components when the assembly is subjected to shock or vibration.
The spring elements used to make the electrical contact between the module sites and the PCB pads may be any one of a number of different types. Among the spring elements are metal filled elastomers, such as those sold by Tyco Inc. (formerly Thomas & Betts) as Metal Particle Interconnect Elastomers. Others are compressible wadded wires, commonly referred to as fuzz buttons shown, for example, in the following patents: U.S. Pat. Nos. 5,552,752; 5.146.453 and 5,631,446. These are small, irregularly wound and inter-twined pads or balls and are made of gold plated beryllium copper wool or gold plated molybdenum wire. Metal springs are also used. These metal springs generally are leaf springs having a number of geometries, such as C-shaped or V-shaped.
In typical LGA applications, shock and vibration can cause a variety of problems which may manifest themselves in decreased reliability and life expectancy, resulting in ongoing maintenance and repair problems. These problems can be viewed from two coordinate systems; 1) The in-plane or x-y axis, as seen when looking at an LGA interposer site, and 2) The x-z or y-z planes which are perpendicular to the board surface.
Problems Along the In-plane or x-y Axis
Typically, an interposer structure uses eight leaf springs (two per side positioned toward the corners) to center the module in an interposer housing. Using spring support on all four edges of the module provides very low (i.e. near zero) spring constant for the module during shock and vibration. As the heat sink mass increases, the natural frequency of the response decreases.
Sliding can occur between the surface of the module and the corresponding surface of the interposer. The module is held in position relative to the interposer by at least two springs on each edge of the module. The shear force between the surfaces is equal to the clamping force applied at right angles to the surfaces, multiplied by the coefficient of friction between the two surfaces.
Efforts that have been used to combat this problem include increasing the assembly clamping force. This increases the friction between the module and the interposer and tends to flatten the two components. Consequently, it increases stresses within these components, thereby leading to cracks or failures of the module and reduced product life.
As the response natural frequency of the system decreases, the alignment springs provide less module restraint during excitation. The only remaining support is the frictional contact that may occur between the module and the spring elements and/or interposer housing.
Problems Along the x-z or y-z Plane
The z-axis problem contains some additional attributes of significance. Module substrate flatness is a critical factor for module motion that is perpendicular to the printed circuit board surface. A flatness of 3 to 6 mils for a ceramic module is common in the industry today, but there is no control over whether the surface is ‘concave’ or ‘convex’. For a ‘convex’ module surface, the center portion of the contact array field is closer to the interposer surface than to the edge portions. There are no established standards or specifications for the flatness of the surface of the interposer, although it is common to strive for a flatness of +/−2 mils.
When a non-flat module substrate is mated to an interposer, this center of the substrate can contact the interposer housing surface first, creating a second loading path (parallel to the spring elements). If there are approximately the same number of spring elements on either side of the contacting portions of the module and interposer, the net stiffness of the elements is again very small. When this assembly is subject to shock and vibration, the heat sink mass and movement arm tend to ‘rock’ the module in the interposer housing. This ‘rocking’ creates contact micro-motion, leading to contact wear, and electrical resistance problems. Contact motion of a small amplitude or micro-motion creates two reliability risks for an electrical contact. First is the risk of disturbing the contact ‘a’ or asperity spot where electrical contact actually occurs. If the ‘a’ spot is disturbed, the electrical contact must be re-established before the next pulse of a digital signal can pass through the connection. This time to re-establish would be measured in nano-seconds. Secondly, small amounts of contact motion can wear the plated precious metal layer intended to protect the contact from corrosion. If the plated layer wears through to the base material susceptible to corrosion, the electrical resistance of the contact can increase, thereby inhibiting the electrical signal from passing.
Another drawback is that there is no protocol for the assembly of the module and interposer in a manner that will provide for the two mating surfaces to be matched so that a concave portion of one body will coincide with a convex surface of the other. Thus, whenever there are non-planar contact points, micro movements in the plane or at an angle to the plane of the module and the interposer can occur.
U.S. Pat. No. 5,720,630 relates to electrical connectors that are adapted to function reliably even under conditions of extreme vibration. These serve to overcome the necessity of providing a large contact area between male and female contact sites. This decreases the degree of design flexibility for the connectors, and the weight of the connector assembly. The connectors utilize a compressible, conductive contact enabling electric signals and current to flow between male contact pins.
SUMMARY OF THE INVENTION
The present invention relates to the prevention or reduction of the contact motion during shock and vibration or other mechanical disturbance of an LGA socket, thereby substantially minimizing electrical resistance problems and mechanical failures between a printed circuit board and a module or other PCB.
One objective of the present invention is to increase the natural frequency of the module-to-LGA mounting system under a given load to accommodate more mechanical disturbance of the assembled system. As the natural frequency increases, the displacement decreases, thereby providing less module motion and increased contact life.
Another objective is to alleviate contact micro-motion and to reduce reliability problems, while at the same time supporting larger heat sink masses.
Yet another objective is to reduce rocking motion between a module, such as a ceramic module, and an interposer in situations wherein the contact surface of the module is convex with respect to the surface of the interposer.
For purposes of briefly describing the present invention, the interposer, module and circuit board are deemed to be rectangular in shape, generally flat and relatively thin in proportion to their planar surfaces. It is understood, however, that the teachings of the invention are likewise applicable to these compone

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and structure for controlled shock and vibration of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and structure for controlled shock and vibration of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and structure for controlled shock and vibration of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2866531

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.